Skip to main content

The Role of P-Glycoprotein in Psychiatric Disorders and in Psychiatric Treatment

  • Chapter
  • First Online:
PET and SPECT in Psychiatry
  • 1636 Accesses

Abstract

With regard to protection of the brain, the endothelial capillary cell harbours an important efflux pump on its surface, called P-glycoprotein (P-gp). This multispecific pump has a large capacity and is capable of extruding an unusual broad range of potentially toxic substances from the brain. Some research findings suggest that this pump plays a role in neuropsychiatric disorders, since these disorders have inflammatory features that are associated with decreased function of P-gp. Other studies have indicated that many of the current antidepressant and antipsychotic agents may modulate the function of P-gp.

In this review, we discuss the current state of knowledge concerning the role of P-glycoprotein on pharmacokinetics of psychiatric drugs and the impact of modulation of P-glycoprotein on major psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achira M, Suzuki H, Ito K et al (1999) Comparative studies to determine the selective inhibitors for P-glycoprotein and cytochrome P4503A4. AAPS PharmSci 1(4):E18

    PubMed  CAS  Google Scholar 

  • Adkison KD, Shen DD (1996) Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther 276(3):1189–1200

    PubMed  CAS  Google Scholar 

  • Aller SG, Yu J, Ward A et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ambroziak K, Kuteykin-Teplyakov K, Luna-Tortos C et al (2010) Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines. Eur J Pharmacol 628(1):57–66

    PubMed  CAS  Google Scholar 

  • Aronica E, Gorter JA, Jansen GH et al (2003) Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience 118(2):417–429

    PubMed  CAS  Google Scholar 

  • Baltes S, Gastens AM, Fedrowitz M et al (2007) Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 52(2):333–346

    PubMed  CAS  Google Scholar 

  • Banerjee S, Bhat MA (2007) Neuron-glial interactions in blood–brain barrier formation. Annu Rev Neurosci 30:235–258

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bartels AL, Kortekaas R, Bart J et al (2008a) Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging 30:1818–1824

    PubMed  Google Scholar 

  • Bartels AL, Willemsen AT, Kortekaas R et al (2008b) Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115(7):1001–1009

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bauer M, Karch R, Neumann F et al (2009) Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET. Eur J Clin Pharmacol 65(9):941–946

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bauer M, Zeitlinger M, Karch R et al (2012) Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood–brain barrier: a comparison with rat data. Clin Pharmacol Ther 91(2):227–233

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bernacki J, Dobrowolska A, Nierwinska K et al (2008) Physiology and pharmacological role of the blood–brain barrier. Pharmacol Rep 60(5):600–622

    PubMed  CAS  Google Scholar 

  • Chandler N, Jacobson S, Esposito P et al (2002) Acute stress shortens the time to onset of experimental allergic encephalomyelitis in SJL/J mice. Brain Behav Immun 16(6):757–763

    PubMed  CAS  Google Scholar 

  • Chaudhuri JD (2000) Blood brain barrier and infection. Med Sci Monit 6(6):1213–1222

    PubMed  CAS  Google Scholar 

  • Choi YK, Kim KW (2008) Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 41(5):345–352

    PubMed  CAS  Google Scholar 

  • Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25(4):231–259

    PubMed  CAS  Google Scholar 

  • Cooray HC, Blackmore CG, Maskell L et al (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13(16):2059–2063

    PubMed  CAS  Google Scholar 

  • de Klerk OL, Willemsen ATM, Roosink M et al (2009) Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood–brain barrier. Int J Neuropsychopharmacol 12(7):895–904

    PubMed  Google Scholar 

  • de Klerk OL, Bosker FJ, Willemsen AT et al (2010a) Chronic stress and antidepressant treatment have opposite effects on P-glycoprotein at the blood–brain barrier: an experimental PET study in rat. J Psychopharmacol 24(8):1237–1242

    PubMed  Google Scholar 

  • de Klerk OL, Willemsen AT, Bosker FJ et al (2010b) Regional increase in P-glycoprotein function in the blood–brain barrier of patients with chronic schizophrenia: a PET study with [(11)C]verapamil as a probe for P-glycoprotein function. Psychiatry Res 183(2):151–156

    PubMed  Google Scholar 

  • de Klerk OL, Nolte IM, Bet PM et al (2012) ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder. Pharmacogenomics J. doi:10.1038/tpj.2012.16

    PubMed  Google Scholar 

  • Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9

    PubMed  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    PubMed  CAS  Google Scholar 

  • Dijkstra IM, Hulshof S, van der Valk P et al (2004) Cutting edge: activity of human adult microglia in response to CC chemokine ligand 21. J Immunol 172(5):2744–2747

    PubMed  CAS  Google Scholar 

  • Dong C, Wong ML, Licinio J (2009) Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry 14(12):1105–1118

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doran A, Obach RS, Smith BJ et al (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33(1):165–174

    PubMed  CAS  Google Scholar 

  • Duffy KR, Pardridge WM (1987) Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res 420(1):32–38

    PubMed  CAS  Google Scholar 

  • Ejsing TB, Pedersen AD, Linnet K (2005) P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments. Hum Psychopharmacol 20(7):493–500

    PubMed  CAS  Google Scholar 

  • Ejsing TB, Hasselstrom J, Linnet K (2006) The influence of P-glycoprotein on cerebral and hepatic concentrations of nortriptyline and its metabolites. Drug Metabol Drug Interact 21:139–162

    PubMed  Google Scholar 

  • El Ela AA, Hartter S, Schmitt U et al (2004) Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. J Pharm Pharmacol 56(8):967–975

    PubMed  Google Scholar 

  • Elsinga PH, Hendrikse NH, Bart J et al (2005) Positron emission tomography studies on binding of central nervous system drugs and P-glycoprotein function in the rodent brain. Mol Imaging Biol 7(1):37–44

    PubMed  Google Scholar 

  • Esposito P, Jacobson S, Connolly R et al (2001) Non-invasive assessment of blood–brain barrier (BBB) permeability using a gamma camera to detect 99technetium-gluceptate extravasation in rat brain. Brain Res Protoc 8(2):143–149

    CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA et al (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464

    PubMed  CAS  Google Scholar 

  • Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25(8):423–429

    PubMed  CAS  Google Scholar 

  • Fukui N, Suzuki Y, Sawamura K et al (2007) Dose-dependent effects of the 3435 C> T genotype of ABCB1 gene on the steady-state plasma concentration of fluvoxamine in psychiatric patients. Ther Drug Monit 29(2):185–189

    PubMed  CAS  Google Scholar 

  • Gelisse P, Hillaire-Buys D, Halaili E et al (2007) Carbamazepine and clarithromycin: a clinically relevant drug interaction. Rev Neurol (Paris) 163(11):1096–1099

    CAS  Google Scholar 

  • Ghotbi R, Mannheimer B, Aklillu E et al (2010) Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure–an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol 66(5):465–474

    PubMed  CAS  Google Scholar 

  • Gomez-Gonzalez B, Escobar A (2009) Altered functional development of the blood–brain barrier after early life stress in the rat. Brain Res Bull 79(6):376–387

    PubMed  CAS  Google Scholar 

  • Grant GA, Abbott NJ, Janigro D (1998) Understanding the physiology of the blood–brain barrier: in vitro models. News Physiol Sci 13:287–293

    PubMed  CAS  Google Scholar 

  • Grauer MT, Uhr M (2004) P-glycoprotein reduces the ability of amitriptyline metabolites to cross the blood brain barrier in mice after a 10-day administration of amitriptyline. J Psychopharmacol 18(1):66–74

    PubMed  CAS  Google Scholar 

  • Gudmundsson P, Skoog I, Waern M et al (2007) The relationship between cerebrospinal fluid biomarkers and depression in elderly women. Am J Geriatr Psychiatry 15(10):832–838

    PubMed  Google Scholar 

  • Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3):388–397

    PubMed  CAS  Google Scholar 

  • Hamann GF, Schimrigk K (1995) What is the relevance of the endothelins in subarachnoid haemorrhage? J Neurol Neurosurg Psychiatry 58(3):392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hamm S, Dehouck B, Kraus J et al (2004) Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315(2):157–166

    PubMed  Google Scholar 

  • Hartz AM, Bauer B, Fricker G et al (2004) Rapid regulation of P-glycoprotein at the blood–brain barrier by endothelin-1. Mol Pharmacol 66(3):387–394

    PubMed  CAS  Google Scholar 

  • Hartz AM, Bauer B, Fricker G et al (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol 69(2):462–470

    PubMed  CAS  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    PubMed  CAS  Google Scholar 

  • Hendrikse NH, Schinkel AH, de Vries EG et al (1998) Complete in vivo reversal of P-glycoprotein pump function in the blood–brain barrier visualized with positron emission tomography. Br J Pharmacol 124(7):1413–1418

    PubMed Central  PubMed  CAS  Google Scholar 

  • Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 2772(Pt 2):H508–H514

    Google Scholar 

  • Hoffmeyer S, Burk O, von Richter O et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97(7):3473–3478

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23(5):477–501

    PubMed  CAS  Google Scholar 

  • Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 16(6):206–214

    PubMed  CAS  Google Scholar 

  • Jedlitschky G, Leier I, Buchholz U et al (1994) ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res 54(18):4833–4836

    PubMed  CAS  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV et al (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312(5990):162–163

    PubMed  CAS  Google Scholar 

  • Jiang S, Su C, Ballok D (2008) Astrocytes and astrocyte-derived factors in the blood–brain barrier in health and disease. In: Helio TR (ed) The blood brain barrier. 1st7. Nova Science Publishers, New York, pp 153–168

    Google Scholar 

  • Jones AR, Shusta EV (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24(9):1759–1771

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jovanovic N, Bozina N, Lovric M et al (2010) The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naive patients with first-episode schizophrenia treated with risperidone. Eur J Clin Pharmacol 66(11):1109–1117

    PubMed  CAS  Google Scholar 

  • Jover F, Cuadrado JM, Andreu L et al (2002) Reversible coma caused by risperidone-ritonavir interaction. Clin Neuropharmacol 25(5):251–253

    PubMed  CAS  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    PubMed  CAS  Google Scholar 

  • Kanai Y, Endou H (2003) Functional properties of multispecific amino acid transporters and their implications to transporter-mediated toxicity. J Toxicol Sci 28(1):1–17

    PubMed  CAS  Google Scholar 

  • Kannan P, John C, Zoghbi SS et al (2009) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86(4):368–377

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karssen AM, Meijer OC, van der Sandt I et al (2001) Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142(6):2686–2694

    PubMed  CAS  Google Scholar 

  • Kato M, Fukuda T, Serretti A et al (2008) ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32(2):398–404

    PubMed  CAS  Google Scholar 

  • Kessler RC, Berglund P, Demler O et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105

    PubMed  Google Scholar 

  • Kirschbaum KM, Henken S, Hiemke C et al (2008) Pharmacodynamic consequences of P-glycoprotein-dependent pharmacokinetics of risperidone and haloperidol in mice. Behav Brain Res 188(2):298–303

    PubMed  CAS  Google Scholar 

  • Kirschbaum KM, Uhr M, Holthoewer D et al (2010) Pharmacokinetics of acute and sub-chronic aripiprazole in P-glycoprotein deficient mice. Neuropharmacology 59(6):474–479

    PubMed  CAS  Google Scholar 

  • Kreisl WC, Liow JS, Kimura N et al (2010) P-glycoprotein function at the blood–brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J Nucl Med 51(4):559–566

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kuzman MR, Medved V, Bozina N et al (2008) The influence of 5-HT(2C) and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res 160(3):308–315

    PubMed  CAS  Google Scholar 

  • Laika B, Leucht S, Steimer W (2006) ABCB1 (P-glycoprotein/MDR1) gene G2677T/a sequence variation (polymorphism): lack of association with side effects and therapeutic response in depressed inpatients treated with amitriptyline. Clin Chem 52(5):893–895

    PubMed  CAS  Google Scholar 

  • Lazarowski A, Massaro M, Schteinschnaider A et al (2004) Neuronal MDR-1 gene expression and persistent low levels of anticonvulsants in a child with refractory epilepsy. Ther Drug Monit 26(1):44–46

    PubMed  Google Scholar 

  • Lee YJ, Maeda J, Kusuhara H et al (2006) In vivo evaluation of P-glycoprotein function at the blood–brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther 316(2):647–653

    PubMed  CAS  Google Scholar 

  • Leung JW, Chung SS, Chung SK (2009) Endothelial endothelin-1 over-expression using receptor tyrosine kinase tie-1 promoter leads to more severe vascular permeability and blood brain barrier breakdown after transient middle cerebral artery occlusion. Brain Res 1266:121–129

    PubMed  CAS  Google Scholar 

  • Lin YC, Ellingrod VL, Bishop JR et al (2006) The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit 28(5):668–672

    PubMed  CAS  Google Scholar 

  • Lin KM, Chiu YF, Tsai IJ et al (2011) ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenet Genomics 21(4):163–170

    PubMed  CAS  Google Scholar 

  • Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18(3):157–169

    PubMed  CAS  Google Scholar 

  • Liu X, Chen C, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325(2):349–356

    PubMed  CAS  Google Scholar 

  • Lombardo L, Pellitteri R, Balazy M et al (2008) Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res 5(2):82–92

    PubMed  CAS  Google Scholar 

  • Lubberink M, Luurtsema G, van Berckel BN et al (2007) Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J Cereb Blood Flow Metab 27(2):424–433

    PubMed  CAS  Google Scholar 

  • Luna-Tortos C, Fedrowitz M, Loscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55(8):1364–1375

    PubMed  CAS  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J et al (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24(1):27–53

    PubMed  CAS  Google Scholar 

  • Maines LW, Antonetti DA, Wolpert EB et al (2005) Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology 49(5):610–617

    PubMed  CAS  Google Scholar 

  • Mason BL, Pariante CM, Jamel S et al (2010) Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood-CNS barriers and nonbarrier regions. Endocrinology 151(11):5294–5305

    PubMed Central  PubMed  CAS  Google Scholar 

  • Matsson P, Englund G, Ahlin G et al (2007) A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther 323(1):19–30

    PubMed  CAS  Google Scholar 

  • Matsson P, Pedersen JM, Norinder U et al (2009) Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res 26(8):1816–1831

    PubMed  CAS  Google Scholar 

  • Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30(3):228–234

    PubMed  CAS  Google Scholar 

  • McRae MP, Brouwer KL, Kashuba AD (2003) Cytokine regulation of P-glycoprotein. Drug Metab Rev 35(1):19–33

    PubMed  CAS  Google Scholar 

  • Mihaljevic PA, Bozina N, Sagud M et al (2008) MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1439–1444

    Google Scholar 

  • Mintun MA, Lundstrom BN, Snyder AZ et al (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98(12):6859–6864

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miura M, Uno T, Tateishi T et al (2007) Pharmacokinetics of fexofenadine enantiomers in healthy subjects. Chirality 19(3):223–227

    PubMed  CAS  Google Scholar 

  • Murck H (2002) Magnesium and affective disorders. Nutr Neurosci 5(6):375–389

    PubMed  CAS  Google Scholar 

  • O’Brien SM, Scott LV, Dinan TG (2004) Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum Psychopharmacol 19(6):397–403

    PubMed  Google Scholar 

  • Okamura T, Kikuchi T, Okada M et al (2009) Noninvasive and quantitative assessment of the function of multidrug resistance-associated protein 1 in the living brain. J Cereb Blood Flow Metab 29(3):504–511

    PubMed  CAS  Google Scholar 

  • Omidi Y, Barar J, Ahmadian S et al (2008) Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Cell Biochem Funct 26(3):381–391

    PubMed  CAS  Google Scholar 

  • Ott M, Huls M, Cornelius MG et al (2010) St. John’s Wort constituents modulate P-glycoprotein transport activity at the blood–brain barrier. Pharm Res 27(5):811–822

    PubMed  CAS  Google Scholar 

  • Pardridge WM (2002a) Drug and gene delivery to the brain: the vascular route. Neuron 36(4):555–558

    PubMed  CAS  Google Scholar 

  • Pardridge WM (2002b) Neurotrophins, neuroprotection and the blood–brain barrier. Curr Opin Investig Drugs 3(12):1753–1757

    PubMed  CAS  Google Scholar 

  • Pardridge WM (2005) Molecular biology of the blood–brain barrier. Mol Biotechnol 30(1):57–70

    PubMed  CAS  Google Scholar 

  • Pardridge WM (2006) Molecular Trojan horses for blood–brain barrier drug delivery. Curr Opin Pharmacol 6(5):494–500

    PubMed  CAS  Google Scholar 

  • Pariante CM, Makoff A, Lovestone S et al (2001) Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 134(6):1335–1343

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pedersen JM, Matsson P, Bergstrom CA et al (2008) Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J Med Chem 51(11):3275–3287

    PubMed  CAS  Google Scholar 

  • Peer D, Dekel Y, Melikhov D et al (2004) Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res 64(20):7562–7569

    PubMed  CAS  Google Scholar 

  • Perlis RH, Fijal B, Dharia S et al (2010) Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry 67(11):1110–1113

    PubMed  CAS  Google Scholar 

  • Peters EJ, Slager SL, Kraft JB et al (2008) Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One 3(4):e1872

    PubMed Central  PubMed  Google Scholar 

  • Qian W, Homma M, Itagaki F et al (2006) MDR1 Gene polymorphism in Japanese patients with schizophrenia and mood disorders including depression. Biol Pharm Bull 29(12):2446–2450

    PubMed  CAS  Google Scholar 

  • Ramsauer M, Krause D, Dermietzel R (2002) Angiogenesis of the blood–brain barrier in vitro and the function of cerebral pericytes. FASEB J 16(10):1274–1276

    PubMed  CAS  Google Scholar 

  • Rao VV, Dahlheimer JL, Bardgett ME et al (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 96(7):3900–3905

    PubMed Central  PubMed  CAS  Google Scholar 

  • Renes J, de Vries EG, Nienhuis EF et al (1999) ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol 126(3):681–688

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roberts DJ, Goralski KB (2008) A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol 4(10):1245–1264

    PubMed  CAS  Google Scholar 

  • Roberts RL, Joyce PR, Mulder RT et al (2002) A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J 2(3):191–196

    PubMed  CAS  Google Scholar 

  • Sarginson JE, Lazzeroni LC, Ryan HS et al (2010) ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genomics 20(8):467–475

    PubMed  CAS  Google Scholar 

  • Sasongko L, Link JM, Muzi M et al (2005) Imaging P-glycoprotein transport activity at the human blood–brain barrier with positron emission tomography. Clin Pharmacol Ther 77(6):503–514

    PubMed  CAS  Google Scholar 

  • Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29(2):201–217

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA et al (1996) P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97(11):2517–2524

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seneca N, Zoghbi SS, Liow JS et al (2009) Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein. J Nucl Med 50(5):807–813

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sharom FJ (2006) Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Biochem Cell Biol 84(6):979–992

    PubMed  CAS  Google Scholar 

  • Sheehan NL, Brouillette MJ, Delisle MS et al (2006) Possible interaction between lopinavir/ritonavir and valproic acid exacerbates bipolar disorder. Ann Pharmacother 40(1):147–150

    PubMed  Google Scholar 

  • Singh P, Kaur J, Kaur P et al (2009) Search for MDR modulators: design, syntheses and evaluations of N-substituted acridones for interactions with p-glycoprotein and Mg2+. Bioorg Med Chem 17(6):2423–2427

    PubMed  CAS  Google Scholar 

  • Sinton CM, Fitch TE, Petty F et al (2000) Stressful manipulations that elevate corticosterone reduce blood–brain barrier permeability to pyridostigmine in the rat. Toxicol Appl Pharmacol 165(1):99–105

    PubMed  CAS  Google Scholar 

  • Sirot Jacqenoud EM, Knezevic BM, Morena GPM et al (2009) ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol 29(4):319–326

    Google Scholar 

  • Slot AJ, Wise DD, Deeley RG et al (2008) Modulation of human multidrug resistance protein (MRP) 1 (ABCC1) and MRP2 (ABCC2) transport activities by endogenous and exogenous glutathione-conjugated catechol metabolites. Drug Metab Dispos 36(3):552–560

    PubMed  CAS  Google Scholar 

  • Smith QR, Stoll J (1998) Blood–brain barrier amino acid transport. In: Pardridge WM (ed) Introduction to the blood–brain barrier. 1st20. Cambridge University Press, Cambridge, pp 188–197

    Google Scholar 

  • Störmer E, von Moltke LL, Perloff MD et al (2001) P-glycoprotein interactions of nefazodone and trazodone in cell culture. J Clin Pharmacol 41(7):708–714

    PubMed  Google Scholar 

  • Sukhai M, Piquette-Miller M (2000) Regulation of the multidrug resistance genes by stress signals. J Pharm Pharm Sci 3(2):268–280

    PubMed  CAS  Google Scholar 

  • Syvanen S, Hammarlund-Udenaes M (2010) Using PET studies of P-gp function to elucidate mechanisms underlying the disposition of drugs. Curr Top Med Chem 10(17):1799–1809

    PubMed  Google Scholar 

  • Szabo D, Szabo G Jr, Ocsovszki I et al (1999) Anti-psychotic drugs reverse multidrug resistance of tumor cell lines and human AML cells ex-vivo. Cancer Lett 139(1):115–119

    PubMed  CAS  Google Scholar 

  • Tan KH, Purcell WM, Heales SJ et al (2002) Evaluation of the role of P-glycoprotein in inflammation induced blood–brain barrier damage. Neuroreport 13(18):2593–2597

    PubMed  CAS  Google Scholar 

  • Thoeringer CK, Wultsch T, Shahbazian A et al (2009) Multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) inhibition by tariquidar impacts on neuroendocrine and behavioral processing of stress. Psychoneuroendocrinology 32(8–10):1028–1040, 2007

    Google Scholar 

  • Tsuji A (2005) Small molecular drug transfer across the blood–brain barrier via carrier-mediated transport systems. NeuroRx 2(1):54–62

    PubMed Central  PubMed  Google Scholar 

  • Ueda K, Okamura N, Hirai M et al (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267(34):24248–24252

    PubMed  CAS  Google Scholar 

  • Uhr M, Grauer MT (2003) abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 37(3):179–185

    PubMed  Google Scholar 

  • Uhr M, Steckler T, Yassouridis A et al (2000) Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood–brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 22(4):380–387

    PubMed  CAS  Google Scholar 

  • Uhr M, Grauer MT, Holsboer F (2003) Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry 54(8):840–846

    PubMed  CAS  Google Scholar 

  • Uhr M, Grauer MT, Yassouridis A et al (2007) Blood–brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res 41(1):179–188

    PubMed  Google Scholar 

  • Uhr M, Tontsch A, Namendorf C et al (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57(2):203–209

    PubMed  CAS  Google Scholar 

  • Urquhart BL, Kim RB (2009) Blood–brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 65(11):1063–1070

    PubMed  CAS  Google Scholar 

  • Volk HA, Burkhardt K, Potschka H et al (2004) Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience 123(3):751–759

    PubMed  CAS  Google Scholar 

  • Wagner CC, Bauer M, Karch R et al (2009) A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood–brain barrier with (R)-11C-verapamil and PET. J Nucl Med 50(12):1954–1961

    PubMed Central  PubMed  Google Scholar 

  • Wang JS, Taylor R, Ruan Y et al (2003) Olanzapine penetration into brain is greater in transgenic Abcb1a P-glycoprotein-deficient mice than FVB1 (wild-type) animals. Neuropsychopharmacology 29(3):551–557, American College of Neuropsychopharmacology

    CAS  Google Scholar 

  • Wang JS, Ruan Y, Taylor RM et al (2004) The brain entry of risperidone and 9-hydroxyrisperidone is greatly limited by P-glycoprotein. Int J Neuropsychopharmacol 7(4):415–419, Cambridge Journals Online

    PubMed  CAS  Google Scholar 

  • Wang JS, Zhu HJ, Markowitz JS et al (2006) Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology (Berl) 187(4):415–423

    CAS  Google Scholar 

  • Wang JS, Zhu HJ, Gibson BB et al (2008) Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein. Biol Pharm Bull 31(2):231–234

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang JS, Zhu HJ, Donovan JL et al (2009) Aripiprazole brain concentration is altered in P-glycoprotein deficient mice. Schizophr Res 110(1–3):90–94

    PubMed  Google Scholar 

  • Warren MS, Zerangue N, Woodford K et al (2009) Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59(6):404–413

    PubMed  CAS  Google Scholar 

  • Weber CC, Kressmann S, Ott M et al (2005) Inhibition of P-glycoprotein function by several antidepressants may not contribute to clinical efficacy. Pharmacopsychiatry 38(6):293–300

    PubMed  CAS  Google Scholar 

  • Weber CC, Eckert GP, Muller WE (2006) Effects of antidepressants on the brain/plasma distribution of corticosterone. Neuropsychopharmacology 31(11):2443–2448

    PubMed  CAS  Google Scholar 

  • Weiss J, Dormann SM, Martin-Facklam M et al (2003) Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther 305(1):197–204

    PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38(6):323–337

    PubMed  CAS  Google Scholar 

  • Xing Q, Gao R, Li H et al (2006) Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics 7(7):987–993

    PubMed  CAS  Google Scholar 

  • Yang HW, Liu HY, Liu X et al (2008) Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett 434(3):299–303

    PubMed  CAS  Google Scholar 

  • Yasui-Furukori N, Mihara K, Takahata T et al (2004) Effects of various factors on steady-state plasma concentrations of risperidone and 9-hydroxyrisperidone: lack of impact of MDR-1 genotypes. Br J Clin Pharmacol 57(5):569–575

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yu XQ, Xue CC, Wang G et al (2007) Multidrug resistance associated proteins as determining factors of pharmacokinetics and pharmacodynamics of drugs. Curr Drug Metab 8(8):787–802

    PubMed  CAS  Google Scholar 

  • Zhang Y, Schuetz JD, Elmquist WF et al (2004) Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 311(2):449–455

    PubMed  CAS  Google Scholar 

  • Zhao R, Raub TJ, Sawada GA et al (2009) Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos 37(6):1251–1258

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou SF, Wang LL, Di YM et al (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15(20):1981–2039

    PubMed  CAS  Google Scholar 

  • Ziylan YZ, Baltaci AK, Mogulkoc R (2009) Leptin transport in the central nervous system. Cell Biochem Funct 27(2):63–70

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onno L. de Klerk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Klerk, O.L. (2014). The Role of P-Glycoprotein in Psychiatric Disorders and in Psychiatric Treatment. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., den Boer, J. (eds) PET and SPECT in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40384-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40384-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40383-5

  • Online ISBN: 978-3-642-40384-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics