Skip to main content

Imaging of the Antidepressant Drug Response Using SPECT and PET

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

SPECT and PET imaging has played an important role in the evaluation of pharmaceutical interventions in mood disorders such as depression.

This review highlights the proposed role of monoamines, their precursors and the blood–brain barrier in depression and the antidepressant drug response. Reviewed are trials using SPECT and PET, including levodopa and carbidopa moclobemide and St. John’s wort; selegiline; the selective serotonin reuptake inhibitors (SSRIs) citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine and sertraline; the noradrenaline-dopamine reuptake inhibitor (NDRI) bupropion; the serotonin-noradrenaline reuptake inhibitor (SNRI) venlafaxine; and the tricyclic antidepressants (TCAs) amitriptyline, nortriptyline and desipramine.

So far there is no apparent consensus on SPECT and PET imaging features for depression and its treatment, except that at least 80 % of serotonin transporters have to be occupied by serotonin reuptake inhibitors to achieve a clinically effective antidepressant drug response. The lack of characteristic imaging features may be due to inadequately designed imaging studies with insufficient in- and exclusion criteria, or it may be due to different aetiologies underlying the depressive state. Another possibility is that depression may be a non-regionalised phenomenon with global brain participation, similar to what has been proposed for the generation of the conscious condition.

In the future, it is likely that SPECT and PET imaging will remain an important tool and challenge in individual- and group-based approaches to obtain further information on depression and the antidepressant drug response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarsland D, Påhlhagen S, Ballard CG et al (2011) Depression in Parkinson disease – epidemiology, mechanisms and management. Nat Rev Neurol 8(1):35–47

    PubMed  Google Scholar 

  • Abi-Dargham A, Rodenhiser J, Printz D et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97(14):8104–8109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Adigüzel O, Kaptanoglu E, Turgut B et al (2004) The possible effect of clinical recovery on regional cerebral blood flow deficits in fibromyalgia: a prospective study with semiquantitative SPECT. South Med J 97(7):651–655

    PubMed  Google Scholar 

  • Austin MP, Dougall N, Ross M et al (1992) Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J Affect Disord 26(1):31–43

    PubMed  CAS  Google Scholar 

  • Beaulieu J-M, Gainetdinov RR (2011) The physiology, signalling and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    PubMed  CAS  Google Scholar 

  • Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 229(1):101–103

    PubMed  CAS  Google Scholar 

  • Berney A, Nishikawa M, Benkelfat C et al (2008) An index of 5-HT synthesis changes during early antidepressant treatment: alpha-[11C]methyl-L-tryptophan PET study. Neurochem Int 52(4–5):701–708

    PubMed  CAS  Google Scholar 

  • Blier P, De Montigny C (1983) Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat. J Neurosci 3(6):1270–1278

    PubMed  CAS  Google Scholar 

  • Boado RJ, Li JY, Nagaya M et al (1999) Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc Natl Acad Sci U S A 96(21):12079–12084

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bonansco C, Couve A, Perea G et al (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33:1483–1492

    PubMed  Google Scholar 

  • Booij J, Habraken JB, Bergmans P et al (1998) Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 39(11):1879–1884

    PubMed  CAS  Google Scholar 

  • Bremner JD, Innis RB, Salomon RM et al (1997) Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse. Arch Gen Psychiatry 54(4):364–374

    PubMed  CAS  Google Scholar 

  • Bremner JD, Vythilingam M, Ng CK et al (2003) Regional brain metabolic correlates of alpha-methylparatyrosine-induced depressive symptoms: implications for the neural circuitry of depression. JAMA 289(23):3125–3134

    PubMed Central  PubMed  Google Scholar 

  • Brockmann H, Zobel A, Joe A et al (2009) The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression. Psychiatry Res 173(2):107–112

    PubMed  CAS  Google Scholar 

  • Brody AL, Saxena S, Stoessel P et al (2001) Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 58(7):631–640

    PubMed  CAS  Google Scholar 

  • Brücke T, Kornhuber J, Angelberger P et al (1993) SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. J Neural Transm Gen Sect 94(2):137–146

    PubMed  Google Scholar 

  • Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions: a review. Arch Gen Psychiatry 13:483–494

    PubMed  CAS  Google Scholar 

  • Carlsson A (1977) Does dopamine play a role in schizophrenia? Psychol Med 7(4):583–597

    PubMed  CAS  Google Scholar 

  • Chételat G, Eustache F, Viader F et al (2005) FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11(1):14–25

    PubMed  Google Scholar 

  • Clauss RP (2010) Neurotransmitters in coma, vegetative and minimally conscious states, pharmacological interventions. Med Hypotheses 75(3):287–290

    PubMed  CAS  Google Scholar 

  • Clauss RP (2011) Neurotransmitters in disorders of consciousness and brain damage. Med Hypotheses 77(2):209–213

    PubMed  CAS  Google Scholar 

  • Colamussi P, Calò G, Sbrenna S et al (1999) New insights on flow-independent mechanisms of 99mTc-HMPAO retention in nervous tissue: in vitro study. J Nucl Med 40(9):1556–1562

    PubMed  CAS  Google Scholar 

  • Coppen AJ (1969) Biochemical aspects of depression. Int Psychiatry Clin 6:53–81

    PubMed  CAS  Google Scholar 

  • Davies J, Lloyd KR, Jones IK et al (2003) Changes in regional cerebral blood flow with venlafaxine in the treatment of major depression. Am J Psychiatry 160(2):374–376

    PubMed  Google Scholar 

  • Davis A, Gilhooley M, Agius M (2010) Using non-steroidal anti-inflammatory drugs in the treatment of depression. Psychiatr Danub 22(Suppl 1):S49–S52

    PubMed  Google Scholar 

  • de Klerk OL, Willemsen AT, Roosink M et al (2009) Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood–brain barrier. Int J Neuropsychopharmacol 12(7):895–904, Epub 2009 Feb 19

    PubMed  Google Scholar 

  • de Klerk OL, Bosker FJ, Willemsen AT et al (2010) Chronic stress and antidepressant treatment have opposite effects on P-glycoprotein at the blood–brain barrier: an experimental PET study in rats. J Psychopharmacol 24(8):1237–1242

    PubMed  Google Scholar 

  • Edelman GM, Gally JA, Baars BJ (2011) Biology of consciousness. Front Psychol 2(4):1–7

    Google Scholar 

  • Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45(3):419–430

    PubMed  CAS  Google Scholar 

  • Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137(6 Suppl 1):1539S–1547S

    PubMed  CAS  Google Scholar 

  • Fountoulakis KN, Iacovides A, Gerasimou G et al (2004) The relationship of regional cerebral blood flow with subtypes of major depression. Prog Neuropsychopharmacol Biol Psychiatry 28(3):537–546

    PubMed  Google Scholar 

  • Green AR (2006) Neuropharmacology of 5-hydroxytryptamine. Br J Pharmacol 147(Suppl 1):S145–S152

    PubMed  Google Scholar 

  • Greene R, Siegel J (2004) Sleep: a functional enigma. Neuromolecular Med 5(1):59–68

    PubMed  CAS  Google Scholar 

  • Hannestad J, Subramanyam K, Dellagioia N et al (2012) Glucose metabolism in the insula and cingulate is affected by systemic inflammation in humans. J Nucl Med 53(4):601–607, Epub 2012 Mar 13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herold N, Uebelhack K, Franke L et al (2006) Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Neural Transm 113(5):659–670

    PubMed  CAS  Google Scholar 

  • Hierholzer J, Cordes M, Schelosky L et al (1992) The determination of cerebral dopamine (D2) receptor density by using 123I-IBZM-SPECT in Parkinson disease patients. Rofo 157(4):390–398

    PubMed  CAS  Google Scholar 

  • Hirvonen J, Hietala J, Kajander J et al (2011) Effects of antidepressant drug treatment and psychotherapy on striatal and thalamic dopamine D2/3 receptors in major depressive disorder studied with [11C]raclopride PET. J Psychopharmacol 25(10):1329–1336

    PubMed  CAS  Google Scholar 

  • Holthoff VA, Beuthien-Baumann B, Pietrzyk U et al (1999) Changes in regional cerebral perfusion in depression. SPECT monitoring of response to treatment. Nervenarzt 70(7):620–626

    PubMed  CAS  Google Scholar 

  • Imamura K, Okayasu N, Nagatsu T (2011) The relationship between depression and regional cerebral blood flow in Parkinson’s disease and the effect of selegiline treatment. Acta Neurol Scand 124(1):28–39

    PubMed  CAS  Google Scholar 

  • Ito H, Halldin C, Farde L (1999) Localization of 5-HT1A receptors in the living human brain using [carbonyl-11C]WAY-100635: PET with anatomic standardization technique. J Nucl Med 40(1):102–109

    PubMed  CAS  Google Scholar 

  • Jiang J, Wei WH, Feng YL et al (2010) Application of 99mTc-DTPA in evaluation of blood–brain barrier permeability in patients receiving whole brain irradiation. Nan Fang Yi Ke Da Xue Xue Bao 30(2):329–330

    PubMed  Google Scholar 

  • Juengling FD, Ebert D, Gut O et al (2000) Prefrontal cortical hypometabolism during low-dose interferon alpha treatment. Psychopharmacology (Berl) 152(4):383–389

    CAS  Google Scholar 

  • Kanaya T, Yonekawa M (1990) Regional cerebral blood flow in depression. Jpn J Psychiatry Neurol 44(3):571–576

    PubMed  CAS  Google Scholar 

  • Kasper S, Sacher J, Klein N et al (2009) Differences in the dynamics of serotonin reuptake transporter occupancy may explain superior clinical efficacy of escitalopram versus citalopram. Int Clin Psychopharmacol 24(3):119–125

    PubMed  Google Scholar 

  • Katz DI, Polyak M, Coughlan D et al (2009) Natural history of recovery from brain injury after prolonged disorders of consciousness: outcome of patients admitted to inpatient rehabilitation with 1–4 year follow-up. Prog Brain Res 177:73–88

    PubMed  Google Scholar 

  • Kennedy SH, Evans KR, Krüger S et al (2001) Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 158(6):899–905

    PubMed  CAS  Google Scholar 

  • Kennedy SH, Konarski JZ, Segal ZV et al (2007) Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 164(5):778–788

    PubMed  Google Scholar 

  • Klein N, Sacher J, Geiss-Granadia T et al (2006) In vivo imaging of serotonin transporter occupancy by means of SPECT and [123I]ADAM in healthy subjects administered different doses of escitalopram or citalopram. Psychopharmacology (Berl) 188(3):263–272

    CAS  Google Scholar 

  • Kondziolka D, Niranjan A, Flickinger JC et al (2005) Radiosurgery with or without whole-brain radiotherapy for brain metastases: the patients’ perspective regarding complications. Am J Clin Oncol 28(2):173–179

    PubMed  Google Scholar 

  • Kugaya A, Sanacora G, Staley JK et al (2004) Brain serotonin transporter availability predicts treatment response to selective serotonin reuptake inhibitors. Biol Psychiatry 56(7):497–502

    PubMed  CAS  Google Scholar 

  • Langen KJ, Bröer S (2004) Molecular transport mechanisms of radiolabeled amino acids for PET and SPECT. J Nucl Med 45(9):1435–1436

    PubMed  CAS  Google Scholar 

  • Lanzenberger R, Kranz GS, Haeusler D et al (2012) Prediction of SSRI treatment response in major depression based on serotonin transporter interplay between median raphe nucleus and projection areas. Neuroimage 63(2):874–881

    PubMed  CAS  Google Scholar 

  • Larisch R, Klimke A, Vosberg H et al (1997) In vivo evidence for the involvement of dopamine-D2 receptors in striatum and anterior cingulate gyrus in major depression. Neuroimage 5(4 Pt 1):251–260

    PubMed  CAS  Google Scholar 

  • Larisch R, Kley K, Nikolaus S et al (2004) Depression and anxiety in different thyroid function states. Horm Metab Res 36(9):650–653

    PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20(3):423–445

    PubMed  CAS  Google Scholar 

  • Lemke MR (2007) Antidepressant effects of dopamine agonists. Experimental and clinical findings. Nervenarzt 78(1):31–38

    PubMed  CAS  Google Scholar 

  • Lieberman JA (2003) History of the use of antidepressants in primary care. Primary Care Companion. J Clin Psychiatry 5(suppl 7):6–10

    Google Scholar 

  • Liggan DY, Kay J (1999) Some neurobiological aspects of psychotherapy: a review. J Psychother Pract Res 8:103–114

    PubMed Central  PubMed  CAS  Google Scholar 

  • Little JT, Ketter TA, Kimbrell TA et al (2005) Bupropion and venlafaxine responders differ in pretreatment regional cerebral metabolism in unipolar depression. Biol Psychiatry 57(3):220–228

    PubMed  CAS  Google Scholar 

  • Maes M, Dierckx R, Meltzer HY et al (1993) Regional cerebral blood flow in unipolar depression measured with 99mTc-HMPAO single photon emission computed tomography: negative findings. Psychiatry Res 50(2):77–88

    PubMed  CAS  Google Scholar 

  • Malberg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 26(12):631–638

    PubMed  CAS  Google Scholar 

  • Malison RT, Price LH, Berman R et al (1998) Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44(11):1090–1098

    PubMed  CAS  Google Scholar 

  • Martin SD, Martin E, Rai SS et al (2001) Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride: preliminary findings. Arch Gen Psychiatry 58(7):641–648

    PubMed  CAS  Google Scholar 

  • Mayberg HS, Silva JA, Brannan SK et al (2002) The functional neuroanatomy of the placebo effect. Am J Psychiatry 159(5):728–737

    PubMed  Google Scholar 

  • Meyer JH, Kruger S, Wilson AA et al (2001a) Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12(18):4121–4125

    PubMed  CAS  Google Scholar 

  • Meyer JH, Wilson AA, Ginovart N et al (2001b) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. Am J Psychiatry 158(11):1843–1849

    PubMed  CAS  Google Scholar 

  • Meyer JH, Goulding VS, Wilson AA et al (2002) Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology (Berl) 163(1):102–105

    CAS  Google Scholar 

  • Moresco RM, Colombo C, Fazio F et al (2000) Effects of fluvoxamine treatment on the in vivo binding of [F-18]FESP in drug naive depressed patients: a PET study. Neuroimage 12(4):452–465

    PubMed  CAS  Google Scholar 

  • Nagamachi S, Jinnouchi S, Nishii R et al (2004) Cerebral blood flow abnormalities induced by transient hypothyroidism after thyroidectomy–analysis by 99mTc-HMPAO and SPM96. Ann Nucl Med 18(6):469–477

    PubMed  Google Scholar 

  • Nam HY, Song SH, Kim SJ et al (2011) Effect of dialysis on cerebral blood flow in depressive end-stage renal disease patients. Ann Nucl Med 25(3):165–171

    PubMed  CAS  Google Scholar 

  • Nikolaus S, Larisch R, Beu M et al (2000) Diffuse cortical reduction of neuronal activity in unipolar major depression: a retrospective analysis of 337 patients and 321 controls. Nucl Med Commun 21(12):1119–1125

    PubMed  CAS  Google Scholar 

  • Nikolaus S, Hautzel H, Heinzel A et al (2012) Key players in major and bipolar depression–a retrospective analysis of in vivo imaging studies. Behav Brain Res 232(2):358–390

    PubMed  Google Scholar 

  • Nobler MS, Roose SP, Prohovnik I et al (2000) Regional cerebral blood flow in mood disorders, V. Effects of antidepressant medication in late-life depression. Am J Geriatr Psychiatry 8(4):289–296

    PubMed  CAS  Google Scholar 

  • Nofzinger EA, Nichols TE, Meltzer CC et al (1999) Changes in forebrain function from waking to REM sleep in depression: preliminary analyses of [18F]FDG PET studies. Psychiatry Res 91(2):59–78

    PubMed  CAS  Google Scholar 

  • Nutt DJ (2008) Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 69 Suppl E1:4–7

    PubMed  Google Scholar 

  • Nyakale NE, Clauss RP, Nel HW, Sathekge MM (2010) Clinical and Brain SPECT scan response to zolpidem in patients after brain damage. Arzneimittelforschung 60(4):177–181

    PubMed  CAS  Google Scholar 

  • O’Brien TJ, Brinkmann BH, Mullan BP et al (1999) Comparative study of 99mTc-ECD and 99mTc-HMPAO for peri-ictal SPECT: qualitative and quantitative analysis. J Neurol Neurosurg Psychiatry 66(3):331–339

    PubMed Central  PubMed  Google Scholar 

  • Parker G, Brotchie H (2011) Mood effects of the amino acids tryptophan and tyrosine: ‘Food for Thought’ III. Acta Psychiatr Scand 124(6):417–426

    PubMed  CAS  Google Scholar 

  • Praschak-Rieder N, Hussey D, Wilson AA et al (2004) Tryptophan depletion and serotonin loss in selective serotonin reuptake inhibitor-treated depression: an [(18)F] MPPF positron emission tomography study. Biol Psychiatry 56(8):587–591

    PubMed  CAS  Google Scholar 

  • Raedler TJ (2011) Inflammatory mechanisms in major depressive disorder. Curr Opin Psychiatry 24(6):519–525

    PubMed  Google Scholar 

  • Reneman L, Booij J, Habraken JB et al (2002) Validity of [123I]beta-CIT SPECT in detecting MDMA-induced serotonergic neurotoxicity. Synapse 46(3):199–205

    PubMed  CAS  Google Scholar 

  • Ruhé HG, Ooteman W, Booij J et al (2009) Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder. Pharmacogenet Genomics 19(1):67–76

    PubMed  Google Scholar 

  • Sacher J, Houle S, Parkes J et al (2011) Monoamine oxidase A inhibitor occupancy during treatment of major depressive episodes with moclobemide or St. John’s wort: an [11C]-harmine PET study. J Psychiatry Neurosci 36(6):375–382

    PubMed Central  PubMed  Google Scholar 

  • Sacher J, Rabiner EA, Clark M et al (2012) Dynamic, adaptive changes in MAO-A binding after alterations in substrate availability: an in vivo [(11)C]-harmine positron emission tomography study. J Cereb Blood Flow Metab 32(3):443–446

    PubMed Central  PubMed  CAS  Google Scholar 

  • Savitz J, Lucki I, Drevets WC (2009) 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88(1):17–31

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122(5):509–522

    PubMed  CAS  Google Scholar 

  • Segawa H, Fukasawa Y, Miyamoto K et al (1999) Identification and functional characterization of a Na+−independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274(28):19745–19751

    PubMed  CAS  Google Scholar 

  • Shah PJ, Ogilvie AD, Goodwin GM et al (1997) Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med 27(6):1247–1256

    PubMed  CAS  Google Scholar 

  • Sharman R, Sullivan K, Young RM et al (2012) Depressive symptoms in adolescents with early and continuously treated phenylketonuria: Associations with phenylalanine and tyrosine levels. Gene 504(2):288–291

    PubMed  CAS  Google Scholar 

  • Shouse MN, Staba RJ, Saquib SF et al (2000) Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res 860(1–2):181–189

    PubMed  CAS  Google Scholar 

  • Shrestha S, Hirvonen J, Hines CS et al (2012) Serotonin-1A receptors in major depression quantified using PET: controversies, confounds, and recommendations. Neuroimage 59(4):3243–3251

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smith GS, Kramer E, Hermann C et al (2009) Serotonin modulation of cerebral glucose metabolism in depressed older adults. Biol Psychiatry 66(3):259–266

    PubMed Central  PubMed  CAS  Google Scholar 

  • Soares JC, Innis RB (1999) Neurochemical brain imaging investigations of schizophrenia. Biol Psychiatry 46(5):600–615

    PubMed  CAS  Google Scholar 

  • Strauss KA, Puffenberger EG, Morton DH (2009) Maple syrup urine disease. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (eds) GeneReviews™ Seattle [internet] (WA): University of Washington, Seattle; 1993–2006 Jan 30 [updated 2009 Dec 15]. Excerpt

    Google Scholar 

  • Suchecki D, Tiba PA, Machado RB (2012) REM sleep rebound as an adaptive response to stressful situations. Front Neurol 3:41

    PubMed Central  PubMed  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Suhara T, Takano A, Sudo Y et al (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60(4):386–391

    PubMed  CAS  Google Scholar 

  • Uchino H, Kanai Y, Kim DK et al (2002) Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 61(4):729–737

    PubMed  CAS  Google Scholar 

  • van Heeringen C, Audenaert K, Van Laere K et al (2003) Prefrontal 5-HT2a receptor binding index, hopelessness and personality characteristics in attempted suicide. J Affect Disord 74(2):149–158

    PubMed  Google Scholar 

  • Van Praag HM (1967) Antidepressants, catecholamines and 5-hydroxyindoles: trends towards a more specific research in the field of antidepressants. Psychiatr Neurol Neurochir 70:219–233

    PubMed  Google Scholar 

  • Voineskos AN, Wilson AA, Boovariwala A et al (2007) Serotonin transporter occupancy of high-dose selective serotonin reuptake inhibitors during major depressive disorder measured with [11C]DASB positron emission tomography. Psychopharmacology (Berl) 193(4):539–545

    CAS  Google Scholar 

  • Warwick JM, Carey PD, Cassimjee N et al (2012) Dopamine transporter binding in social anxiety disorder: the effect of treatment with escitalopram. Metab Brain Dis 27(2):151–158

    PubMed  CAS  Google Scholar 

  • Wasser CR, Kavalali ET (2009) Leaky synapses: Regulation of spontaneous neurotransmission in central synapses. Neuroscience 158(1):177–188

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wasserstein MP, Snyderman SE, Sansaricq C et al (2006) Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol Genet Metab 87(3):272–277

    PubMed  CAS  Google Scholar 

  • Weder B, Oettli R, Bekier A (1990) The contribution of single-photon emission-computed tomography in cerebral function diagnosis. Schweiz Med Wochenschr 120(48):1791–1800

    PubMed  CAS  Google Scholar 

  • Weintraub D, Newberg AB, Cary MS et al (2005) Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med 46(2):227–232

    PubMed  CAS  Google Scholar 

  • Zerarka S, Pellerin L, Slosman D, Magistretti PJ (2001) Astrocytes as a predominant cellular site of (99m)Tc-HMPAO retention. J Cereb Blood Flow Metab 21(4):456–468

    PubMed  CAS  Google Scholar 

  • Zipursly RB, Meyer JH, Verhoeff NP (2007) PET and SPECT imaging in psychiatric disorders. Can J Psychiatry 52(3):146–157

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr S. Nikolaus, Dr H. Hautzel, and Prof KJ Langen for their valuable input in the consideration of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf P. Clauss MD, FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clauss, R.P., Zöttl, M., Sathekge, M. (2014). Imaging of the Antidepressant Drug Response Using SPECT and PET. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., den Boer, J. (eds) PET and SPECT in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40384-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40384-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40383-5

  • Online ISBN: 978-3-642-40384-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics