Skip to main content

Abstract

Folates play an essential role in one-carbon methyl transfer reactions, mediating several biological processes including DNA synthesis, regulation of gene expression through methylation reactions, embryonic central nervous system development, synthesis and breakdown of amino acids, and synthesis of thymidines, purines, and neurotransmitters. In mammals, folates are mostly derived from exogenous sources as folate is stored in the liver for few months. The biologically active folic acid derivative is 5,6,7,8-tetrahydrofolate (THF). Dietary folate is absorbed in the intestine. In the cytoplasm, interconversion of 5,10-methylene-THF and 5,10-methenyl-THF, interconversion of 5,10-methenyl-THF and 10-formyl-THF, and reaction of THF with formate to synthesize 10-formyl-THF are mediated by the MTHFD1 gene that encodes a trifunctional protein. Metabolism of 5,10-methylene-THF to 5-methyl-THF in the liver is catalyzed by methylene-THF reductase (MTHFR). 5-methyl-THF is then widely distributed in the bloodstream. The transport of 5-methyl-THF inside the cells is mediated by different transport systems that include the proton-coupled folate transporter (PCFT), the reduced folate carrier 1 (RFC1), and the two GPI-anchored receptors, folate receptor alpha (FRα) and beta (FRβ). The physiological form of folate, 5-methyl-THF is actively transported to the central nervous system by FRα-mediated endocytosis in choroid epithelial cells, reaching a higher concentration in the cerebrospinal fluid when compared to the serum. FRα is a high-affinity low-capacity receptor that functions at a nanomolar range of extracellular folate concentrations. Thus far, six different inherited disorders of folate metabolism are known which lead to folate deficiency including hereditary folate malabsorption, folate receptor alpha deficiency, methylenetetrahydrofolate reductase deficiency, methenyltetrahydrofolate synthetase deficiency, dihydrofolate reductase deficiency, and methylenetetrahydrofolate dehydrogenase deficiency. Furthermore, in some cases, an additional disorder, namely, cerebral folate deficiency (CFD) caused by FOLR1 autoantibodies has also been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banka S, Blom HJ, Walter J, Aziz M, Urquhart J, Clouthier CM, Rice GI, de Brouwer AP, Hilton E, Vassallo G, Will A, Smith DE, Smulders YM, Wevers RA, Steinfeld R, Heales S, Crow YJ, Pelletier JN, Jones S, Newman WG (2011) Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency. Am J Hum Genet 88:216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A 94:3290–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonkowsky JL, Ramaekers VT, Quadros EV, Lloyd M (2008) Progressive encephalopathy in a child with cerebral folate deficiency syndrome. J Child Neurol 23:1460–1463

    Article  PubMed  Google Scholar 

  • Botez MI, Peyronnard JM, Berube L, Labrecque R (1979) Relapsing neuropathy, cerebral atrophy and folate deficiency. A close association. Appl Neurophysiol 42:171–183

    CAS  PubMed  Google Scholar 

  • Cario H, Bode H, Debatin KM, Opladen T, Schwarz K (2009) Congenital null mutations of the FOLR1 gene: a progressive neurologic disease and its treatment. Neurology 73:2127–2129

    Article  CAS  PubMed  Google Scholar 

  • Cario H, Smith DE, Blom H, Blau N, Bode H, Holzmann K, Pannicke U, Hopfner KP, Rump EM, Ayric Z, Kohne E, Debatin KM, Smulders Y, Schwarz K (2011) Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet 88:226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill P, Schneider J, Weber P, Trachsel D, Tekin M, Jakobs C, Thony B, Blau N (2011) Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM). Mol Genet Metab 104:362–368

    Article  CAS  PubMed  Google Scholar 

  • Fournier I, Ploye F, Cottet-Emard JM, Brun J, Claustrat B (2002) Folate deficiency alters melatonin secretion in rats. J Nutr 132:2781–2784

    CAS  PubMed  Google Scholar 

  • Geller J, Kronn D, Jayabose S, Sandoval C (2002) Hereditary folate malabsorption: family report and review of the literature. Medicine (Baltimore) 81:51–68

    Article  CAS  Google Scholar 

  • Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, Huang Y, Young D, Jacob ST (2006) A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr 136:1522–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet 7:551

    CAS  PubMed  Google Scholar 

  • Grapp M, Just IA, Linnankivi T, Wolf P, Lucke T, Hausler M, Gartner J, Steinfeld R (2012) Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 135(Pt 7):2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Hansen FJ, Blau N (2005) Cerebral folate deficiency: life-changing supplementation with folinic acid. Mol Genet Metab 84:371–373

    Article  CAS  PubMed  Google Scholar 

  • Ho A, Michelson D, Aaen G, Ashwal S (2010) Cerebral folate deficiency presenting as adolescent catatonic schizophrenia: a case report. J Child Neurol 25:898–900

    Article  PubMed  Google Scholar 

  • Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Keller et al (2013) Severe combined immunodeficiency resulting from mutations in MTHFD1. Pediatrics 131(2):e629–e634

    Google Scholar 

  • Linhart HG, Troen A, Bell GW, Cantu E, Chao WH, Moran E, Steine E, He T, Jaenisch R (2009) Folate deficiency induces genomic uracil misincorporation and hypomethylation but does not increase DNA point mutations. Gastroenterology 136(227–235):e223

    Google Scholar 

  • Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456

    Article  CAS  PubMed  Google Scholar 

  • Moretti P, Sahoo T, Hyland K, Bottiglieri T, Peters S, del Gaudio D, Roa B, Curry S, Zhu H, Finnell RH, Neul JL, Ramaekers VT, Blau N, Bacino CA, Miller G, Scaglia F (2005) Cerebral folate deficiency with developmental delay, autism, and response to folinic acid. Neurology 64:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Moretti P, Peters SU, Del Gaudio D, Sahoo T, Hyland K, Bottiglieri T, Hopkin RJ, Peach E, Min SH, Goldman D, Roa B, Bacino CA, Scaglia F (2008) Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J Autism Dev Disord 38:1170–1177

    Article  PubMed  Google Scholar 

  • Perez-Duenas B, Toma C, Ormazabal A, Muchart J, Sanmarti F, Bombau G, Serrano M, Garcia-Cazorla A, Cormand B, Artuch R (2010) Progressive ataxia and myoclonic epilepsy in a patient with a homozygous mutation in the FOLR1 gene. J Inherit Metab Dis 33:795–802

    Article  PubMed  Google Scholar 

  • Perez-Duenas B, Ormazabal A, Toma C, Torrico B, Cormand B, Serrano M, Sierra C, De Grandis E, Marfa MP, Garcia-Cazorla A, Campistol J, Pascual JM, Artuch R (2011) Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Arch Neurol 68:615–621

    Article  PubMed  Google Scholar 

  • Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP (2008) Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 1237:25–34

    Article  CAS  PubMed  Google Scholar 

  • Prasad AN, Rupar CA, Prasad C (2011) Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy. Brain Dev 33:758–769

    Article  PubMed  Google Scholar 

  • Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers VT, Blau N (2004) Cerebral folate deficiency. Dev Med Child Neurol 46:843–851

    Article  PubMed  Google Scholar 

  • Schiff M, Benoist JF, Tilea B, Royer N, Giraudier S, Ogier de Baulny H (2011) Isolated remethylation disorders: do our treatments benefit patients? J Inherit Metab Dis 34:137–145

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gartner J (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss KA, Morton DH, Puffenberger EG, Hendrickson C, Robinson DL, Wagner C, Stabler SP, Allen RH, Chwatko G, Jakubowski H, Niculescu MD, Mudd SH (2007) Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab 91:165–175

    Article  CAS  PubMed  Google Scholar 

  • Ucar SK, Koroglu OA, Berk O, Yalaz M, Kultursay N, Blom HJ, Coker M (2010) Titration of betaine therapy to optimize therapy in an infant with 5,10-methylenetetrahydrofolate reductase deficiency. Eur J Pediatr 169:241–243

    Article  PubMed  Google Scholar 

  • Watkins D, Rosenblatt DS (2012) Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis 35(4):665–670

    Article  CAS  PubMed  Google Scholar 

  • Watkins D, Schwartzentruber JA, Ganesh J, Orange JS, Kaplan BS, Nunez LD, Majewski J, Rosenblatt DS (2011) Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet 48:590–592

    Article  CAS  PubMed  Google Scholar 

  • Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA (1992) Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 52:6708–6711

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Blau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scaglia, F., Blau, N. (2014). Disorders of Folate Metabolism and Transport. In: Blau, N., Duran, M., Gibson, K., Dionisi Vici, C. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40337-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40336-1

  • Online ISBN: 978-3-642-40337-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics