Skip to main content

Abstract

Soft Computing [1–3], as the name suggests, deals with the soft meaning of concepts. This is a relatively new computing paradigm which entails a synergistic integration of essentially four other computing paradigms, viz., neural networks, fuzzy logic, rough sets and evolutionary computation, incorporating probabilistic reasoning (belief networks, genetic algorithms and chaotic systems). These computing paradigms are conjoined to provide a framework for flexible information processing applications designed to operate in the real-world. Bezdek [4] referred to this synergism as computational intelligence. According to Prof. Zadeh, soft computing is “an emerging approach to computing, which parallels the remarkable ability of the human mind to reason and learn in an environment of uncertainty and imprecision” [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.A. Zadeh, Fuzzy logic, neural networks, and soft computing. Commun. ACM 37, 77–84 (1994)

    Google Scholar 

  2. N.R. Pal, Soft computing for pattern recognition. Fuzzy Sets Syst. 103, 197–200 (1999)

    Google Scholar 

  3. J.C. Bezdek, On the relationship between neural networks, pattern recognition and intelligence. Int. J. Approx. Reason. 6, 85–107 (1992)

    MathSciNet  Google Scholar 

  4. J.R. Jang, C. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (Prentice-Hall, Englewood Cliffs, 1997)

    Google Scholar 

  5. S. Bhattacharyya, U. Maulik, S. Bandyopadhyay, Soft computing and its applications, in Kansei Engineering and Soft Computing: Theory and Practice ed. by Y. Dai, B. Chakraborty, M. Shi (IGI Global, Hershey, 2011), pp. 1–30

    Google Scholar 

  6. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MathSciNet  MATH  Google Scholar 

  7. Z. Pawlak, Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    MathSciNet  MATH  Google Scholar 

  8. D.E. Goldberg, Genetic Algorithms: Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989)

    MATH  Google Scholar 

  9. L. Davis (ed.), Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991)

    Google Scholar 

  10. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, New York, 1992)

    MATH  Google Scholar 

  11. S. Bandyopadhyay, S.K. Pal, Classification and Learning Using Genetic Algorithms: Application in Bioinformatics and Web Intelligence (Springer-Verlag, Hiedelberg, Germany, 2007)

    Google Scholar 

  12. M. Dorigo, Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di Milano, Italy, 1992

    Google Scholar 

  13. J. Kennedy, R. Eberhart, Particle Swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, Perth, vol. 4, pp. 1942–1948, 1995

    Google Scholar 

  14. J. Kennedy, R. Eberhart, Swarm Intelligence (Morgan Kaufmann, San Francisco, CA, USA, 2001)

    Google Scholar 

  15. R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    MathSciNet  MATH  Google Scholar 

  16. S. Kirkpatrik, C. Gelatt, M. Vecchi, Optimization by simulated annealing. Science 22, 671–680 (1983)

    Google Scholar 

  17. T. Murata, H. Ishibuchi, MOGA: multi-objective genetic algorithms, in Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, Perth, 29 Nov–1 Dec 1995

    Google Scholar 

  18. U. Maulik, S. Bandyopadhyay, A. Mukhopadhyay, Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics (Springer, Berlin/Heidelberg, 2011)

    Google Scholar 

  19. F. Xue, A.C. Sanderson, R.J. Graves, Pareto-based multi-objective differential evolution, in Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003), Canberra, vol. 2 (IEEE, 2003), pp. 862–869

    Google Scholar 

  20. F. Xue, Multi-objective Differential Evolution: Theory and Applications. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York, 2004

    Google Scholar 

  21. K. Smith, R. Everson, J. Fieldsend, Dominance measures for multi-objective simulated annealing, in Proceedings of 2004 IEEE Congress on Evolutionary Computation (CEC’2004), Portland, Oregon, USA, vol. 1, June 2004, ed. by E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, D. Corne (IEEE Service Center, 2004), pp. 23–30

    Google Scholar 

  22. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  23. S. Kumar, Neural Networks: A Classroom Approach (Tata McGraw-Hill, New Delhi, 2004)

    Google Scholar 

  24. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edn. (Prentice Hall, Upper Saddle River, 1999)

    MATH  Google Scholar 

  25. R. Rojas, Neural Networks: A Systematic Introduction (Springer, Berlin, 1996)

    Google Scholar 

  26. T. Kohonen, Self-Organization and Associative Memory (Springer, London, 1984)

    MATH  Google Scholar 

  27. T. Kohonen, Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)

    MathSciNet  MATH  Google Scholar 

  28. T.J. Ross, Fuzzy Logic with Engineering Applications (McGraw-Hill, Hightstown, 1995)

    MATH  Google Scholar 

  29. S. Bhattacharyya, U. Maulik, P. Dutta, High-speed target tracking by fuzzy hostility-induced segmentation of optical flow field. Int. J. Appl. Soft Comput. 9, 126–134 (2009)

    Google Scholar 

  30. S. Bhattacharyya, P. Dutta, Multiscale object extraction with MUSIG and MUBET with CONSENT: a comparative study, in Proceedings of KBCS 2004, Hyderabad, India, Dec 2004, pp. 100–109

    Google Scholar 

  31. S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb, A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12, 269–283 (2008)

    Google Scholar 

  32. S. Bhattacharyya, Neural networks: evolution, topologies, learning algorithms and applications, in Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies, ed. by V. Mago, N. Bhatia (IGI Global, Hershey, 2012)

    Google Scholar 

  33. G.G. Matthews, Cellular Physiology of Nerve and Muscle (Blackwell Scientific Publications, Boston, 1991)

    Google Scholar 

  34. A. Brown, Nerve Cells and Nervous Systems (Springer, Berlin, 1991)

    Google Scholar 

  35. http://www.wikipedia.org/wiki/NMDA_receptor, 2011

  36. F. Li, J.Z. Tsien, Clinical implications of basic research: memory and the NMDA receptors. N. Engl. J. Med. 361, 302 (2009)

    Google Scholar 

  37. R. Dingledine, K. Borges, D. Bowie, S.F. Traynelis, The glutamate receptor ion channels. Pharmacol. Rev. 51(1), 7–61 (1999)

    Google Scholar 

  38. O. Steward, Principles of Cellular, Molecular, and Developmental Neuroscience (Springer, New York, 1989)

    Google Scholar 

  39. H. Reichert, Neurobiologie (Georg Thieme, Stuttgart, 1990)

    Google Scholar 

  40. R. Thompson, Das Gehirn: Von der Nervenzelle zur Verhaltenssteuerung (Spektrum der Wissenschaft, Heidelberg, 1990)

    Google Scholar 

  41. T.V.P. Bliss, T. Lomo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 331, 331–356 (1973)

    Google Scholar 

  42. T. Kohonen, Self-Organizing Maps. Springer Series in Information Sciences, vol. 30 (Springer, Berlin, Heidelberg, New York, 2001)

    Google Scholar 

  43. B.W. Wah, M.B. Lowrie, G. Li, Computers for symbolic processing, Invited paper. Proc. IEEE 77(4), 509–540 (1989)

    Google Scholar 

  44. W. Maass, C.M. Bishop (eds.), Pulsed Neural Networks (MIT, Cambridge, 1999)

    Google Scholar 

  45. C.T. Leondes, Image Processing and Pattern Recognition. (Neural Network Techniques and Applications), vol. 5 (Academic Press, San Diego, 1998)

    Google Scholar 

  46. J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, 1974)

    Google Scholar 

  47. R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973)

    MATH  Google Scholar 

  48. C. Cortes, V.N. Vapnik, Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  49. C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Google Scholar 

  50. D.S. Broomhead, D. Lowe, Multivariate functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  51. J.A. Anderson, Introduction to Neural Networks (MIT, Cambridge, 1995)

    MATH  Google Scholar 

  52. K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Google Scholar 

  53. J.J. Hopfield, Neurons with graded response have collective computational properties like those of two state neurons. Proc. Natl. Acad. Sci. U.S.A. 81(10), 3088–3092 (1984)

    Google Scholar 

  54. J.A. Anderson, The BSB model: a simple nonlinear autoassociative neural network, in Associative Neural Memories, ed. by M. Hassoun (Oxford University Press Inc., New York, 1993)

    Google Scholar 

  55. S. Hui, S.H. Zak, Dynamical analysis of the Brain-State-in-a-Box (BSB) neural model. IEEE Trans. Neural Netw. 3, 86–94 (1992)

    Google Scholar 

  56. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985)

    Google Scholar 

  57. G.E. Hinton, T.J. Sejnowski, Parallel distributed processing: explorations in the microstructure of cognition (learning and relearning in boltzmann machines), in Foundations, ed. by D.E. Rumelhart, J.L. McClelland, the PDP Research Group, vol. 1 (MIT, Cambridge, 1986), pp. 282–317

    Google Scholar 

  58. B. Kosko, Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18(1), 49–60 (1988)

    MathSciNet  Google Scholar 

  59. B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence (Prentice-Hall, Englewood Cliffs, 1992)

    MATH  Google Scholar 

  60. G.A. Carpenter, W.D. Ross, ART-EMAP: a neural network architecture for object recognition by evidence accumulation. IEEE Trans. Neural Netw. 6(4), 805–818 (1995)

    Google Scholar 

  61. L.B. Almeida, F. Silva, Speeding-up backpropagation by data orthonormalization. Artif. Neural Netw. 2, 56–149 (1991)

    Google Scholar 

  62. L.B. Almeida, F. Silva, Speeding-up backpropagation, in Advanced Neural Computers, ed. by R. Eckmiller (North-Holland, Amsterdam, 1990), pp. 151–156

    Google Scholar 

  63. R.A. Jacobs, Increased rates of convergence through learning rate adaptation. Neural Netw. 1, 295–307 (1988)

    Google Scholar 

  64. D. Mandic, J. Chambers, Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability (Wiley, New York, 2001)

    Google Scholar 

  65. M. Gerke, H. Hoyer, Fuzzy backpropagation training of neural networks, in Computational Intelligence Theory and Applications, ed. by B. Reusch (Springer, Berlin, 1997), pp. 416–427

    Google Scholar 

  66. X.G. Wang, Z. Tang, H. Tamura, M. Ishii, W.D. Sun, An improved backpropagation algorithm to avoid the local minima problem. Neurocomputing 56, 455–460 (2004)

    Google Scholar 

  67. W. Bi, X.G. Wang, Z. Tang, H. Tamura, Avoiding the local minima problem in backpropagation algorithm with modified error function. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88-A, 3645–3653 (2005)

    Google Scholar 

  68. M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design (PWS-Kent, Boston, 1996)

    Google Scholar 

  69. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in Proceedings of IEEE International Conference on Neural Networks, San Francisco, 1993, pp. 586–591

    Google Scholar 

  70. C. Charalambous, Conjugate gradient algorithm for efficient training of artificial neural networks. Proc. IEEE 139(3), 301–310 (1992)

    Google Scholar 

  71. M.T. Hagan, M.B. Menhaj, Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

    Google Scholar 

  72. X. Yu, N.K. Loh, W.C. Miller, A new acceleration technique for the backpropagation algorithm, in Proceedings of IEEE International Conference on Neural Networks, San Diego, California, 1993, vol. III, pp. 1157–1161

    Google Scholar 

  73. R. Salomon, Verbesserung konnektionistischer Lernverfahren. Ph.D. thesis, Die nach der Gradientenmethode arbeiten, Technical University of Berlin, 1992

    Google Scholar 

  74. M. Pfister, R. Rojas, Speeding-up backpropagation – a comparison of orthogonal techniques, in Proceedings of International Joint Conference on Neural Networks, Japan, 1993, pp. 517–523

    Google Scholar 

  75. M. Pfister, Hybrid Learning Algorithms for Neural Networks. Ph.D. thesis, Free University, Berlin, 1995

    Google Scholar 

  76. J. Leonard, M.A. Kramer, Improvement of the backpropagation algorithm for training neural networks. Comput. Chem. Eng. 14(3), 337–341 (1990)

    Google Scholar 

  77. A. Kandel, Fuzzy Mathematical Techniques with Applications (Addison-Wesley, New York, 1986)

    MATH  Google Scholar 

  78. N. Kasamov, Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering (MIT, Cambridge, 1996)

    Google Scholar 

  79. B. Kosko, S. Isaka, Fuzzy logic. Sci. Am. 269, 76–81 (1993)

    Google Scholar 

  80. S. Bhattacharyya, Object Extraction in a Soft Computing Framework. Ph.D. thesis, Jadavpur University, India, 2007

    Google Scholar 

  81. S. Bhattacharyya, P. Dutta, Fuzzy logic: concepts, system design and applications to industrial informatics, in Handbook of Research on Industrial Informatics and Manufacturing Intelligence: Innovations and Solutions, ed. by M.A. Khan, A.Q. Ansari (IGI Global, Hershey, 2012)

    Google Scholar 

  82. S. Bhattacharyya, U. Maulik, P. Dutta, Multilevel image segmentation with adaptive image context based thresholding. Int. J. Appl. Soft Comput. 11, 946–962 (2010)

    Google Scholar 

  83. A. Ghosh, N.R. Pal, S.K. Pal, Self-organization for object extraction using a multilayer neural network and fuzziness measures. IEEE Trans. Fuzzy Syst. 1(1), 54–68 (1993)

    Google Scholar 

  84. A. Deluca, S. Termini, A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf. Control 20, 301–312 (1972)

    MathSciNet  Google Scholar 

  85. G. Frege, Grundlagen der arithmetik, vol. 2 (Verlag von Hermann Pohle, Jena, 1893)

    Google Scholar 

  86. L. Polkowski, Rough Sets, Mathematical Foundations (Physica-Verlag, Heidelberg, 2002)

    MATH  Google Scholar 

  87. L. Polkowski, A. Skowron, Rough mereological calculi granules: a rough set approach to computation. Int. J. Comput. Intell. 17, 472–479 (2001)

    MathSciNet  Google Scholar 

  88. Z. Pawlak, A. Skowron, Rough membership function, in Advances in the Dempster-Schafer Theory of Evidence, ed. by R.E. Yager, M. Fedrizzi, J. Kacprzyk (Wiley, New York, 1994), pp. 251–271

    Google Scholar 

  89. J.J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16, 122–128 (1986)

    Google Scholar 

  90. H. Ishibuchi, M. Nii, T. Murata, Linguistic rule extraction from neural networks and genetic algorithm based rule selection, in Proceedings of IEEE International Conference on Neural Networks, Houston, 1997, pp. 2390–2395

    Google Scholar 

  91. V. Maniezzo, Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans. Neural Netw. 5, 39–53 (1994)

    Google Scholar 

  92. S. Bandyopadhyay, U. Maulik, An evolutionary technique based on K-means algorithm for optimal clustering in R n. Inf. Sci. 146, 221–237 (2002)

    MathSciNet  MATH  Google Scholar 

  93. S. Bandyopadhyay, U. Maulik, A. Mukhopadhyay, Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45, 1506–1511 (2007)

    Google Scholar 

  94. F.A. Cleveland, S.F. Smith, Using genetic algorithms to schedule flow shop releases, in Proceedings of 3rd International Conference on Genetic Algorithms, Fairfax, ed. by J.D. Schaffer (Morgan Kaufmann, San Mateo, CA, 1989), pp. 160–169

    Google Scholar 

  95. S. Bandyopadhyay, A. Bagchi, U. Maulik, Active site driven ligand design: an evolutionary approach. Bioinform. Comput. Biol. 3(5), 1053–1070 (2005)

    Google Scholar 

  96. S. Bandyopadhyay, U. Maulik, D. Roy, Gene identification: classical and computational intelligence approaches. IEEE Trans. Syst. Man Cybern. C 38(1), 55–68 (2008)

    Google Scholar 

  97. P. Mazumder, E.M. Rudnick, Genetic Algorithms for VLSI Design, Layout & Test Automation (Prentice Hall, Upper Saddle River, NJ, 1998)

    Google Scholar 

  98. A. Kumar, R.M. Pathak, M.C. Gupta, Genetic algorithm based approach for designing computer network topology, in Proceedings of ACM Conference on Computer Science, New York, NY, USA, 1993, pp. 358–365

    Google Scholar 

  99. G. Winter, J. Periaux, M. Galan, P. Cuesta (eds.), Genetic Algorithms in Engineering and Computer Science (Wiley, Chichester, 1995)

    Google Scholar 

  100. H. Sgu, R. Hartley, Fast simulated annealing. Phys. Lett. A 122, 157–162 (1987)

    Google Scholar 

  101. F. Glover, Tabu search Part I. ORSA J. Comput. 1, 190–206 (1989)

    MathSciNet  MATH  Google Scholar 

  102. J. Kennedy, R. Eberhart, Particle Swarm optimization, in Proceedings of IEEE International Conference Neural Networks, Perth, WA, 1995, pp. 1942–1948

    Google Scholar 

  103. H.P. Schwefel (ed.), Numerical Optimization of Computer Models (Wiley, Chichester, 1981)

    MATH  Google Scholar 

  104. J.R. Koza (ed.), Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT, Cambridge, 1992)

    MATH  Google Scholar 

  105. S. Bandyopadhyay, U. Maulik, J.T.L. Wang (eds.), Analysis of Biological Data: A Soft Computing Approach (World Scientific, Singapore, 2007)

    Google Scholar 

  106. M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Google Scholar 

  107. H. Kargupta, K. Deb, D.E. Goldberg, Ordering genetic algorithms and deception, in Proceedings of Parallel Problem Solving from Nature, ed. by R. Manner, B. Manderick (North-Holland, Amsterdam, 1992), pp. 47–56

    Google Scholar 

  108. N.J. Radcliffe, Genetic set recombination, in Foundations of Genetic Algorithms, ed. by L.D. Whitley, vol. 2 (Morgan Kaufmann, San Mateo, 1993), pp. 203–219

    Google Scholar 

  109. J.J. Grefenstette, R. Gopal, B. Rosmaita, D. Van Gucht, Genetic algorithms for the traveling salesman problem, in Proceedings of 1st International Conference on Genetic Algorithms, ed. by J.J. Grefenstette (Lawrence Erlbaum Associates, Hillsdale, 1985), pp. 160–168

    Google Scholar 

  110. J. Holland, Adaptation in neural artificial systems, Technical report, University of Michigan, Ann Arbor, 1975

    Google Scholar 

  111. D.E. Goldberg, K. Deb, B. Korb, Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 3, 493–530 (1989)

    MathSciNet  MATH  Google Scholar 

  112. D.E. Goldberg, K. Deb, B. Korb, Do not worry, be messy, in Proceedings of 4th International Conference on Genetic Algorithms and Their Applications, San Diego, USA, ed. by R.K. Belew, J.B. Booker, 1991, pp. 24–30

    Google Scholar 

  113. D.E. Goldberg, K. Deb, H. Kargupta, G. Harik, Rapid, accurate optimization of difficult problems using fast messy genetic algorithms, in Proceedings of 5th International Conference on Genetic Algorithms, Urbana-Champaign, Ill, USA, ed. by S. Forrest, 1993, pp. 56–64

    Google Scholar 

  114. H. Kargupta, S. Bandyopadhyay, Further experimentations on the scalability of the GEMGA. In: Parallel Problem Solving from Nature – PPSN V, 5th International Conference, Amsterdam, ed. by T. Baeck, A. Eiben, M. Schoenauer, H. Schwefel, 1998. Lecture Notes in Computer Science, vol. 1498, pp. 315–324

    Google Scholar 

  115. H. Kargupta, S. Bandyopadhyay, A perspective on the foundation and evolution of the linkage learning genetic algorithms. J. Comput. Methods Appl. Mech. Eng. Special issue on Genetic Algorithms 186, 266–294 (2000)

    Google Scholar 

  116. L.J. Eshelman, J.D. Schaffer, Real-coded genetic algorithms and interval schemata, in Foundations of Genetic Algorithms, ed. by L. Whitley, vol. 2 (Morgan Kaufmann, San Mateo, 1993), pp. 187–202

    Google Scholar 

  117. J.E. Baker, Adaptive selection methods for genetic algorithms, in Proceedings of 1st International Conference on Genetic Algorithms and Their Applications, Pittsburgh, ed. by J.J. Grefenstette (Lawrence Erlbaum Associates, 1985), pp. 101–111

    Google Scholar 

  118. M. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithm. IEEE Trans. Syst. Man Cybern. 24, 656–667 (1994)

    Google Scholar 

  119. S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    MATH  Google Scholar 

  120. S. Bandyopadhyay, U. Maulik, M.K. Pakhira, Clustering using simulated annealing with probabilistic redistribution. Int. J. Pattern Recognit. Artif. Intell. 15(2), 269–285 (2001)

    Google Scholar 

  121. U. Maulik, S. Bandyopadhyay, J. Trinder, SAFE: an efficient feature extraction technique. J. Knowl. Inf. Syst. 3, 374–387 (2001)

    MATH  Google Scholar 

  122. P. Czyzak, A. Jaszkiewicz, Pareto simulated annealing – a metaheuristic technique for multiple-objective combinatorial optimization. J. Multicriteria Decis. Anal. 7, 34–47 (1998)

    MATH  Google Scholar 

  123. D.K. Nam, C. Park, Multiobjective simulated annealing: a comparative study to evolutionary algorithms. Int. J. Fuzzy Syst. 2(2), 87–97 (2000)

    Google Scholar 

  124. E.L. Ulungu, J. Teghaem, P. Fortemps, D. Tuyttens, MOSA method: a tool for solving multiobjective combinatorial decision problems. J. Multi-Criteria Decis. Anal. 8, 221–236 (1999)

    MATH  Google Scholar 

  125. http://www.swarmintelligence.org/, 2006

  126. Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization, in Evolutionary Programming VII: Proceedings of EP 98, San Diego, 1998, pp. 591–600

    Google Scholar 

  127. http://www.scholarpedia.org/article/Particle_swarm_optimization, 2011

  128. M. Clerc, J. Kennedy, The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Google Scholar 

  129. P. Suganthan, Particle swarm optimizer with neighborhood optimizer, in Proceedings of the Congress on Evolutionary Computation, Washington, DC, 1999, pp. 1958–1962

    Google Scholar 

  130. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, AK, NJ, 1998, pp. 69–73

    Google Scholar 

  131. J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in Proceedings of the Congress on Evolutionary Computation, Washington, DC, 1999, pp. 1931–1938

    Google Scholar 

  132. J. Kennedy, R. Mendes, Population structure and particle performance, in Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, 2002

    Google Scholar 

  133. A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, Chichester, 2005)

    Google Scholar 

  134. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: an overview. Swarm Intell. 1(1), 33–57 (2007)

    Google Scholar 

  135. J. Kennedy, R. Eberhart, A discrete binary version of the particle swarm algorithm, in Proceedings of IEEE International Conference on Systems, Man, Cybernetics, Computational Cybernetics, Simulation, vol. 5 (IEEE Service Center, Piscataway, NJ, 1997), Orlando, 1997, pp. 4104–4109

    Google Scholar 

  136. J. Kennedy, Bare bones particle swarms, in Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2003), Indianapolis, IN, USA, 2003, pp. 80–87

    Google Scholar 

  137. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Google Scholar 

  138. F.V. den Bergh, An Analysis of Particle Swarm Optimizers. Ph.D. thesis, Department of Computer Science, University of Pretoria, 2002

    Google Scholar 

  139. I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    MathSciNet  MATH  Google Scholar 

  140. R. Poli, Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008, 1–10 (2008). no. 685175

    Google Scholar 

  141. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)

    Google Scholar 

  142. J.D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in Genetic Algorithms and Their Applications: Proceedings of the First International Conference on Genetic Algorithms and Their Applications, (Lawrence Erlbaum, Hillsdale, 1985), pp. 93–100

    Google Scholar 

  143. C.M. Fonseca, P.J. Fleming, Multiobjective genetic algorithms, in Proceedings of IEE Colloquium on Genetic Algorithms for Control Systems Engineering, No. 1993/130, London, 28 May 1993

    Google Scholar 

  144. J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, in Proceedings of the First IEEE Conference on Evolutionary Computation IEEE World Congress on Computational Intelligence, Orlando, 27–29 June 1994

    Google Scholar 

  145. P. Hajela, C.-Y. Lin, Genetic search strategies in multicriterion optimal design. Struct. Optim. 4(2), 99–107 (1992)

    Google Scholar 

  146. N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms. J. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  147. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Google Scholar 

  148. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolutionary algorithm, Technical report, Swiss Federal Institute of Techonology, Zurich, 2001

    Google Scholar 

  149. J.D. Knowles, D.W. Corne, Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Google Scholar 

  150. D.W. Corne, J.D. Knowles, M.J. Oates, The Pareto envelope-based selection algorithm for multiobjective optimization, in Proceedings of Sixth International Conference on Parallel Problem Solving from Nature, Paris, 18–20 Sept 2000 (Springer, 2000)

    Google Scholar 

  151. D.W. Corne, N.R. Jerram, J. Knowles, J. Oates, PESA-II: region-based selection in evolutionary multiobjective optimization, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, 2001

    Google Scholar 

  152. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  153. R. Sarker, K.-H. Liang, C. Newton, A new multiobjective evolutionary algorithm. Eur. J. Oper. Res. 140(1), 12–23 (2002)

    MathSciNet  MATH  Google Scholar 

  154. C.A. Coello Coello, G.T. Pulido, A micro-genetic algorithm for multiobjective optimization: evolutionary multi-criterion optimization, in First International Conference, EMO 2001, Zurich, 7–9 Mar 2001 (Springer, 2001)

    Google Scholar 

  155. H. Lu, G.G. Yen, Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Trans. Evol. Comput. 7(4), 325–343 (2003)

    Google Scholar 

  156. G.G. Yen, H. Lu, Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Trans. Evol. Comput. 7(3), 253–274 (2003)

    Google Scholar 

  157. E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Google Scholar 

  158. F. Kursawe, A variant of evolution strategies for vector optimization, in Parallel Problem Solving from Nature. First Workshop, PPSN 1 Proceedings, Dortmund, 1–3 Oct 1991 (Springer, 1991)

    Google Scholar 

  159. D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, Cambridge, 28–31 July 1987 (Lawrence Erlbaum Associates, 1987)

    Google Scholar 

  160. K. Deb, D.E. Goldberg, An investigation of niche and species formation in genetic function optimization, in Proceedings of the Third International Conference on Genetic Algorithms, ed. by J.D. Schaffer (Morgan Kaufmann, USA, 1989), pp. 42–50

    Google Scholar 

  161. M.T. Jensen, Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)

    Google Scholar 

  162. A. Konak, A.E. Smith, Multiobjective optimization of survivable networks considering reliability, in Proceedings of the 10th International Conference on Telecommunication Systems, Naval Postgraduate School, Monterey, 2002

    Google Scholar 

  163. A. Konak, A.E. Smith, Capacitated network design considering survivability: an evolutionary approach. J. Eng. Optim. 36(2), 189–205 (2004)

    MathSciNet  Google Scholar 

  164. J.N. Morse, Reducing the size of the nondominated set: pruning by clustering. Comput. Oper. Res. 7(1–2), 55–66 (1980)

    Google Scholar 

  165. H. Ishibuchi, T. Murata, Multi-objective genetic local search algorithm, in Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, 20–22 May 1996

    Google Scholar 

  166. H. Lu, G.G. Yen, Rank-density based multiobjective genetic algorithm, in Proceedings of the 2002 World Congress on Computational Intelligence, WCCI’02, Honolulu, 12–17 May 2002

    Google Scholar 

  167. F. Jimenez, A.F. Gomez-Skarmeta, G. Sanchez, K. Deb, An evolutionary algorithm for constrained multi-objective optimization, in Proceedings of the 2002 World Congress on Computational Intelligence, WCCI’02, Honolulu, 12–17 May 2002

    Google Scholar 

  168. F. Jimenez, J.L. Verdegay, A.F. Gomez-Skarmeta, Evolutionary techniques for constrained multiobjective optimization problems, in Workshop on Multi-criterion Optimization Using Evolutionary Methods GECCO-1999, Orlando, Florida, USA, 1999

    Google Scholar 

  169. E. Mezura-Montes, M. Reyes-Sierra, C.A. Coello Coello, Multi-objective optimization using differential evolution: a survey of the state-of-the-art, in Advances in Differential Evolution, ed. by U.K. Chakraborty (Springer, Berlin, 2008), pp. 173–196

    Google Scholar 

  170. B.V. Babu, M.M.L. Jehan, Differential evolution for multiobjective optimization, in Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003), Canberra, vol. 4 (IEEE, 2003), pp. 2696–2703

    Google Scholar 

  171. K. Deb, Multi-objective Optimization Using Evolutionary Algorithms (Wiley, Chichester, 2001)

    MATH  Google Scholar 

  172. H. Li, Q. Zhang, A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages, in 9th International Conference on Parallel Problem Solving from Nature – PPSN IX, Reykjavik, ed. by T.P. Runarsson, H.-G. Beyer, E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao. Volume 4193 of Lecture Notes in Computer Science (Springer, 2006), pp. 583–592

    Google Scholar 

  173. C.S. Chang, D.Y. Xu, H.B. Quek, Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. IEE Proc. Electr. Power Appl. 146(5), 577–583 (1999)

    Google Scholar 

  174. H.A. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, in Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001), vol. 2 (IEEE Service Center, Piscataway, NJ, 2001), pp. 971–978

    Google Scholar 

  175. H.A. Abbass, R. Sarker, The Pareto differential evolution algorithm. Int. J. Artif. Intell. Tools 11(4), 531–552 (2002)

    Google Scholar 

  176. R. Sarker, H. Abbass, C. Newton, Solving two multi-objective optimization problems using evolutionary algorithm, in Computational Intelligence in Control, ed. by M. Mohammadian, R. Sarker, X. Yao (Idea Group Publishing, Hershey, USA, 2002), pp. 218–232

    Google Scholar 

  177. H.A. Abbass, The self-adaptive Pareto differential evolution algorithm, in Proceedings of Congress on Evolutionary Computation (CEC’2002), vol. 1 (IEEE Service Center, Piscataway, 2002), pp. 831–836

    Google Scholar 

  178. H.A. Abbass, A memetic Pareto evolutionary approach to artificial neural networks, in Proceedings of the fourteenth Australian Joint Conference on Artificial Intelligence, Adelaide, Australia, ed. by M. Brooks, D. Corbett, M. Stumptner. Volume 2256 of Lecture Notes in Computer Science (Springer, 2001), pp. 1–12

    Google Scholar 

  179. J. Lampinen, DE’s selection rule for multiobjective optimization, Technical Report, Department of Information Technology, Lappeenranta University of Technology, 2001

    Google Scholar 

  180. S. Kukkonen, J. Lampinen, An extension of generalized differential evolution for multi-objective optimization with constraints, in Parallel Problem Solving from Nature – PPSN VIII, Birmingham. Volume 3242 of Lecture Notes in Computer Science (Springer, 2004), pp. 752–761

    Google Scholar 

  181. L.V. Santana-Quintero, C.A. Coello Coello, An algorithm based on differential evolution for multi-objective problems. Int. J. Comput. Intell. Res. 1(2), 151–169 (2005)

    MathSciNet  Google Scholar 

  182. M. Laumanns, L. Thiele, K. Deb, E. Zitzler, Combining convergence and diversity in evolutionary multi-objective optimization. Evol. Comput. 10, 263–282 (Fall 2002)

    Google Scholar 

  183. E.A.P. Flores, Integración Simultánea de Aspectos Estructurales y Dinámicos para el Diseño Óptimo de un Sistema de Transmisión de Variación Continua. Ph.D. thesis, Departamento de Ingeniería Eléctrica, Sección de Mecatrónica, CINVESTAV-IPN, México, 2006

    Google Scholar 

  184. E. Mezura-Montes, C.A. Coello Coello, A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans. Evol. Comput. 9, 1–17 (2005)

    Google Scholar 

  185. N.K. Madavan, Multiobjective optimization using a Pareto differential evolution approach, in Congress on Evolutionary Computation (CEC’2002), vol. 2 (IEEE Service Center, Piscataway, 2002), pp. 1145–1150

    Google Scholar 

  186. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, ed. by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1917 (Springer, 2000), pp. 849–858

    Google Scholar 

  187. A.W. Iorio, X. Li, Solving rotated multi-objective optimization problems using differential evolution, in Proceedings of Australian Conference on Artificial Intelligence: Advances in Artificial Intelligence, Cairns, ed. by G.I. Webb, X. Yu. Volume 3339 of Lecture Notes in Artificial Intelligence (Springer-Verlag, Berlin, Heidelberg, 2004), pp. 861–872

    Google Scholar 

  188. A.W. Iorio, X. Li, Incorporating directional information within a differential evolution algorithm for multi-objective optimization, in Proceedings of 2006 Genetic and Evolutionary Computation Conference (GECCO’2006), Seattle, ed. by M. Keijzer et al., vol. 1 (ACM, 2006), pp. 691–697

    Google Scholar 

  189. T. Robiic, B. Filipic, DEMO: differential evolution for multiobjective optimization, in Proceedings of Third International Conference on Evolutionary Multi-criterion Optimization (EMO 2005), Guanajuato, ed. by C.A. Coello Coello, A.H. Aguirre, E. Zitzler. Volume 3410 of Lecture Notes in Computer Science (Springer, 2005), pp. 520–533

    Google Scholar 

  190. S. Kukkonen, J. Lampinen, GDE3: the third evolution step of generalized differential evolution, in Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005), Edinburgh, vol. 1 (IEEE Service Center, 2005), pp. 443–450

    Google Scholar 

  191. K.E. Parsopoulos, D.K. Taoulis, N.G. Pavlidis, V.P. Plagianakos, M.N. Vrahatis, Vector evaluated differential evolution for multiobjective optimization, in Proceedings of 2004 Congress on Evolutionary Computation (CEC’2004), Portland, vol. 1 (IEEE Service Center, 2004), pp. 204–211

    Google Scholar 

  192. A.G. Hernández-Díaz, L.V. Santana-Quintero, C.A. Coello Coello, R. Caballero, J. Molina, A new proposal for multiobjective optimization using differential evolution and rough sets theory, in Proceedings of 2006 Genetic and Evolutionary Computation Conference (GECCO’2006), Seattle, ed. by M. Keijzer et al., vol. 1 (ACM, 2006), pp. 675–682

    Google Scholar 

  193. A.G. Hernández-Díaz, L.V. Santana-Quintero, C.A. Coello Coello, J. Molina, Pareto-adaptive ε-dominance. Evol. Comput. 15, 493–517 (Winter 2007)

    Google Scholar 

  194. R.L. Becerra, C.A. Coello Coello, Solving hard multiobjective optimization problems using ε-constraint with cultured differential evolution, in Proceedings of 9th International Conference on Parallel Problem Solving from Nature – PPSN IX, Reykjavik, ed. by T.P. Runarsson, H.-G. Beyer, E. Burke, J.J. Merelo-Guervos, L.D. Whitley, X. Yao. Volume 4193 of Lecture Notes in Computer Science (Springer, 2006), pp. 543–552

    Google Scholar 

  195. Y.Y. Haimes, L.S. Lasdon, D.A. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1, 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  196. R.L. Becerra, C.A. Coello Coello, Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 195, 4303–4322 (2006)

    MATH  Google Scholar 

  197. K.C. Srigiriraju, Noninferior Surface Tracing Evolutionary Algorithm (NSTEA) for Multiobjective Optimization. Master’s Thesis, North Carolina State University, Raleigh, Aug 2000

    Google Scholar 

  198. S.R. Ranjithan, S.K. Chetan, H.K. Dakshima, Constraint method-based evolutionary algorithm (CMEA) for multiobjective optimization, in Proceedings of First International Conference on Evolutionary Multi-criterion Optimization, Zurich, Switzerland, ed. by E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, D. Corne. Lecture Notes in Computer Science, vol. 1993, pp. 299–313 (Springer, 2001)

    Google Scholar 

  199. I. Das, J. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Opt. 14(1), 163–169 (1997)

    Google Scholar 

  200. A. Jaszkiewicz, Comparison of local search-based metaheuristics on the multiple objective knapsack problem. Found. Comput. Decis. Sci. 26(1), 99–120 (2001)

    MathSciNet  Google Scholar 

  201. B. Suman, Study of self-stopping PDMOSA and performance measure in multiobjective optimization. Comput. Chem. Eng. 29, 1131–1147 (2005)

    Google Scholar 

  202. B. Suman, P. Kumar, A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57(10), 1143–1160 (2006)

    MATH  Google Scholar 

  203. B.J.T. Fernandes, G.D.C. Cavalcanti, T.I. Ren, Classification and segmentation of visual patterns based on receptive and inhibitory fields, in Proceedings of the 8th International Conference on Hybrid Intelligent Systems, Barcelona, 2008, pp. 126–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhattacharyya, S., Maulik, U. (2013). Introduction. In: Soft Computing for Image and Multimedia Data Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40255-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40255-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40254-8

  • Online ISBN: 978-3-642-40255-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics