Skip to main content

Thermodynamic Graph-Rewriting

  • Conference paper
CONCUR 2013 – Concurrency Theory (CONCUR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8052))

Included in the following conference series:

Abstract

We develop a new ‘thermodynamic’ approach to stochastic graph-rewriting. The ingredients are a finite set of reversible graph-rewriting rules \({\mathcal{G}}\) (called generating rules), a finite set of connected graphs \({\mathcal{P}}\) (called energy patterns), and an energy cost function \(\epsilon:{\mathcal{P}}\to{\mathbb{R}}\). The idea is that \({\mathcal{G}}\) defines the qualitative dynamics by showing which transformations are possible, while \({\mathcal{P}}\) and ε specify the long-term probability π of any graph reachable under \({\mathcal{G}}\). Given \({\mathcal{G}}, {\mathcal{P}}\), we construct a finite set of rules \({\mathcal{G}}_{\mathcal{P}}\) which (i) has the same qualitative transition system as \({\mathcal{G}}\), and (ii) when equipped with suitable rates, defines a continuous-time Markov chain of which π is the unique fixed point. The construction relies on the use of site graphs and a technique of ‘growth policy’ for quantitative rule refinement which is of independent interest. The ‘division of labour’ between the qualitative and the long-term quantitative aspects of the dynamics leads to intuitive and concise descriptions for realistic models (see the example in §4). It also guarantees thermodynamical consistency (aka detailed balance), otherwise known to be undecidable, which is important for some applications. Finally, it leads to parsimonious parameterizations of models, again an important point in some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachman, J.A., Sorger, P.: New approaches to modeling complex biochemistry. Nature Methods 8(2), 130 (2011)

    Article  Google Scholar 

  2. Bai, F., Branch, R.W., Nicolau Jr., D.V., Pilizota, T., Steel, B.C., Maini, P.K., Berry, R.M.: Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327(5966), 685–689 (2010)

    Article  Google Scholar 

  3. Bournez, O., Côme, G.-M., Conraud, V., Kirchner, H., Ibanescu, L.: A rule-based approach for automated generation of kinetic chemical mechanisms. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 30–45. Springer, Heidelberg (2003)

    Google Scholar 

  4. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Asian Symposium on Programming Languages and Systems, pp. 139–157 (2007)

    Google Scholar 

  5. Danos, V., Harmer, R., Winskel, G.: Constraining rule-based dynamics with types. Mathematical Structures in Computer Science 23(2), 272–289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danos, V., Oury, N.: Equilibrium and termination II: the case of Petri Nets. Mathematical Structures in Computer Science 23(2), 290–307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danos, V.: Agile modelling of cellular signalling. SOS 2008 Invited paper, Electronic Notes in Theoretical Computer Science 229(4), 3–10 (2009)

    Article  Google Scholar 

  8. Danos, V., Oury, N.: Equilibrium and termination. In: Barry Cooper, S., Panangaden, P., Kashefi, E. (eds.) Proceedings Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics. EPTCS, vol. 26, pp. 75–84 (2010)

    Google Scholar 

  9. Diers, Y.: Familles universelles de morphismes. Tech. report, Université des Sciences et Techniques de Lille I (1978)

    Google Scholar 

  10. Dixon, L., Kissinger, A.: Open graphs and monoidal theories. arXiv:1011.4114 (2010)

    Google Scholar 

  11. Ehrig, H.: Handbook of graph grammars and computing by graph transformation: Applications, Languages and Tools, vol. 2. World Scientific Publishing Company (1999)

    Google Scholar 

  12. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 500, 113–167 (2009)

    Article  Google Scholar 

  13. Gross, T., Sayama, H.: Adaptive networks. Springer (2009)

    Google Scholar 

  14. Hayman, J., Heindel, T.: Pattern graphs and rule-based models: The semantics of kappa. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 1–16. Springer, Heidelberg (2013)

    Google Scholar 

  15. Heckel, R.: DPO transformation with open maps. Graph Transformations, 203–217 (2012)

    Google Scholar 

  16. Heckel, R.: Dpo transformation with open maps. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 203–217. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Science Signalling 2006(344) (2006)

    Google Scholar 

  18. Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. Electronic Notes in Theoretical Computer Science 218, 73–96 (2008)

    Article  Google Scholar 

  19. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Lopez, C.F., Muhlich, J.L., Bachman, J.A., Sorger, P.K.: Programming biological models in python using pysb. Molecular Systems Biology 9(1) (2013)

    Google Scholar 

  21. Lynch, J.: A logical characterization of individual-based models. In: Proceedings of Logic in Computer Science, pp. 203–217 (2008)

    Google Scholar 

  22. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., et al.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087 (1953)

    Article  Google Scholar 

  23. Murphy, E., Danos, V., Feret, J., Harmer, R., Krivine, J.: Rule-based modelling and model resolution. In: Lohdi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology. Wiley (2010)

    Google Scholar 

  24. Tiger, C.-F., Krause, F., Cedersund, G., Palmér, R., Klipp, E., Hohmann, S., Kitano, H., Krantz, M.: A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Molecular Systems Biology 8(1) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danos, V., Harmer, R., Honorato-Zimmer, R. (2013). Thermodynamic Graph-Rewriting. In: D’Argenio, P.R., Melgratti, H. (eds) CONCUR 2013 – Concurrency Theory. CONCUR 2013. Lecture Notes in Computer Science, vol 8052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40184-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40184-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40183-1

  • Online ISBN: 978-3-642-40184-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics