Skip to main content

The Power of Priority Channel Systems

  • Conference paper
CONCUR 2013 – Concurrency Theory (CONCUR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8052))

Included in the following conference series:

Abstract

We introduce Priority Channel Systems, a new natural class of channel systems where messages carry a numeric priority and where higher-priority messages can supersede lower-priority messages preceding them in the fifo communication buffers. The decidability of safety and inevitability properties is shown via the introduction of a priority embedding, a well-quasi-ordering that has not previously been used in well-structured systems. We then show how Priority Channel Systems can compute Fast-Growing functions and prove that the aforementioned verification problems are F ε0-complete.

Work supported by the ReacHard project, ANR grant 11-BS02-001-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. In: FST&TCS 2012. LIPIcs, vol. 18, pp. 374–386. Leibniz-Zentrum für Informatik (2012)

    Google Scholar 

  2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inform. and Comput. 160(1-2), 109–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity results for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inform. and Comput. 127(2), 91–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 62–77. Springer, Heidelberg (2013)

    Google Scholar 

  6. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite state spaces using QDDs. Form. Methods in Syst. Des. 14(3), 237–255 (1999)

    Article  Google Scholar 

  7. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. Theor. Comput. Sci. 221(1-2), 211–250 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On termination and invariance for faulty channel machines. Form. Asp. Comput. 24(4-6), 595–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inform. and Comput. 202(2), 166–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Inform. and Comput. 124(1), 20–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In: LICS 2008, pp. 205–216. IEEE Press (2008)

    Google Scholar 

  12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Handbook of Proof Theory, ch. III, pp. 149–207. Elsevier (1998)

    Google Scholar 

  14. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Genest, B., Muscholl, A., Serre, O., Zeitoun, M.: Tree pattern rewriting systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 332–346. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Gupta, A.: A constructive proof that trees are well-quasi-ordered under minors. In: Nerode, A., Taitslin, M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 174–185. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  17. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–364. IEEE Press (2012)

    Google Scholar 

  18. Kurucz, A.: Combining modal logics. In: Handbook of Modal Logics, ch. 15, pp. 869–926. Elsevier (2006)

    Google Scholar 

  19. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput. Logic 9(2) (2008)

    Google Scholar 

  20. Löb, M., Wainer, S.: Hierarchies of number theoretic functions. I. Arch. Math. Logic 13, 39–51 (1970)

    Article  MATH  Google Scholar 

  21. Ossona de Mendez, P., Nešetřil, J.: Sparsity, ch. 6. Bounded height trees and tree-depth, pp. 115–144. Springer (2012)

    Google Scholar 

  22. Meyer, R.: On boundedness in depth in the π-calculus. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer, Boston (2008)

    Google Scholar 

  23. Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logic. Meth. Logic. Meth. in Comput. Sci. 3(1), 1–27 (2007)

    MathSciNet  Google Scholar 

  24. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Schmitz, S., Schnoebelen, P.: Algorithmic aspects of WQO theory. Lecture notes (2012), http://cel.archives-ouvertes.fr/cel-00727025

  26. Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Schütte, K., Simpson, S.G.: Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Arch. Math. Logic 25(1), 75–89 (1985)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haase, C., Schmitz, S., Schnoebelen, P. (2013). The Power of Priority Channel Systems. In: D’Argenio, P.R., Melgratti, H. (eds) CONCUR 2013 – Concurrency Theory. CONCUR 2013. Lecture Notes in Computer Science, vol 8052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40184-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40184-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40183-1

  • Online ISBN: 978-3-642-40184-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics