Skip to main content

Dual- and Multi-rail Encoding

  • Chapter
  • First Online:
Quantum State Transfer and Network Engineering

Part of the book series: Quantum Science and Technology ((QST))

  • 1522 Accesses

Abstract

We review the dual-rail encoding (Burgarth and Bose, Phys Rev A 71:052315, 2005) which demonstrates how the problem of dispersion in quantum state transfer in spin chain communication can be attacked and overcome through performing measurements at the receiver side. We discuss the performance of the dual-rail technique in detail with respect to noise, disorder in the chain couplings (Burgarth and Bose, New J Phys 7:135, 2005) and deviations from a strict one-dimensionality. We then show how the dual-rail method can be made more efficient by using multiple channels (Burgarth et al., Int J Quant Inf 4:405, 2006; J Phys A Math Gen 38:6793, 2005). We provide a convergence theorem which shows that any nearest-neighbor excitation preserving chain is capable of efficient and perfect state transfer using a multi-rail encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Specifically, we identify the vector \(\left \vert \boldsymbol{0}\right \rangle _{i}\) with the factorized state where all the qubits of the chain are initialized in |0⟩, while \(\left \vert \boldsymbol{n}\right \rangle _{i}\) with the factorized state where all the qubits of the chain are in zero apart from the n-th one which is in \(\vert 1\rangle\).

  2. 2.

    This is not a strong assumption. If the excitation was fully randomly distributed, the probability would scale as N −1. By searching for good arrival times, this can be slightly increased to N −2∕3. 

  3. 3.

    Notice that strictly speaking the eigenvectors of the Hamiltonian are not the same as those of the time evolution operators. The latter still can have evolution times at which additional degeneracy can increase the set of eigenstates. A trivial example is given for t = 0 where all states become eigenstates. But it is always possible to find times t at which the eigenstates of U(t) coincide with those of H.

References

  1. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  2. S. Bose, Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  3. M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  5. V. Giovannetti, R. Fazio, Phys. Rev. A 71, 032314 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Burgarth, S. Bose, Phys. Rev. A 71, 052315 (2005)

    Article  ADS  Google Scholar 

  7. D. Burgarth, S. Bose, New. J. Phys. 7, 135 (2005)

    Article  ADS  Google Scholar 

  8. D. Burgarth, S. Bose, V. Giovannetti, Int. J. Quant. Inf. 4, 405 (2006)

    Article  MATH  Google Scholar 

  9. D. Burgarth, V. Giovannetti, S. Bose, J. Phys. A: Math. Gen. 38, 6793 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. I.L. Chuang, Y. Yamamoto, Phys. Rev. Lett. 76, 4281 (1996)

    Article  ADS  Google Scholar 

  11. N. Motoyama, H. Eisaki, S. Uchida, Phys. Rev. Lett. 76, 3212 (1996)

    Article  ADS  Google Scholar 

  12. P. Gambardella, A. Dallmeyer, K. Maiti, M.C. Malagoli, W. Eberdardt, K. Kern, C. Carbone, Nature 416, 301 (2002)

    Article  ADS  Google Scholar 

  13. T. Yamamoto, Y.A. Pashkin, O. Astafiev, Y. Nakamura, J.S. Tsai, Nature 425, 941 (2003)

    Article  ADS  Google Scholar 

  14. A. Romito, R. Fazio, C. Bruder, Phys. Rev. B 71, 100501(R) (2005)

    Google Scholar 

  15. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, Phys. Rev. Lett. 78, 3217 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  17. I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 299, 1869 (2003)

    Article  ADS  Google Scholar 

  18. G.M. Palma, K.A. Suominen, A.K. Ekert, Proc. R. Soc. Lond. A 452, 567 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. W.Y. Hwang, H. Lee, D.D. Ahn, S.W. Hwang, Phys. Rev. A 62, 062305 (2000)

    Article  ADS  Google Scholar 

  20. A. Beige, D. Braun, P. Knight, New J. Phys. 2, 22 (2000)

    Article  ADS  Google Scholar 

  21. M. Plenio, P. Knight, Rev. Mod. Phys. 70, 101 (1998)

    Article  ADS  Google Scholar 

  22. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  23. G.D. Chiara, D. Rossini, S. Montangero, R. Fazio, Phys. Rev. A 72, 012323 (2005)

    Article  ADS  Google Scholar 

  24. L. Dan, Z. Jing-Fu, Chin. Phys. 15, 272 (2006)

    Article  ADS  Google Scholar 

  25. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  26. J.P. Keating, N. Linden, J.C.F. Matthews, A. Winter Phys. Rev. A 75, 012315 (2007)

    Article  Google Scholar 

  27. T.J.G. Apollaro, F. Plastina, Phys. Rev. A 74, 062316 (2006)

    Article  ADS  Google Scholar 

  28. D. Burgarth, K. Maruyama, F. Nori, Phys. Rev. A 79, 020305R (2009)

    Google Scholar 

  29. B. Sutherland, Phys. Rev. B 12, 3795 (1975)

    Article  ADS  Google Scholar 

  30. C. Hadley, A. Serafini, S. Bose, Phys. Rev. A 72, 052333 (2005)

    Article  ADS  Google Scholar 

  31. A. Bayat, V. Karimipour, Phys. Rev. A 75, 022321 (2007)

    Article  ADS  Google Scholar 

  32. C.H. Bennett, P.W. Shor, IEEE Trans. Inf. Theory 44, 2724 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.R. Schott, Matrix Analysis for Statistics (Wiley-Interscience, Hoboken, 1996)

    Google Scholar 

  34. N. Gisin, N. Linden, S. Massar, S. Popescu, Phys. Rev. A 72, 012338 (2005)

    Article  ADS  Google Scholar 

  35. A. Kay, M. Ericsson, New. J. Phys. 7, 143 (2005)

    Article  ADS  Google Scholar 

  36. B. Vaucher, D. Burgarth, S. Bose, J. Opt. B: Quantum Semiclass. Opt. 7, S356 (2005)

    Article  ADS  Google Scholar 

  37. B. Vaucher, Quantum communication of spin-qubits using a collaborative approach. Master’s thesis, Ecole Polytechnique Federale de Lausanne (2005)

    Google Scholar 

  38. M. Avellino, A.J. Fisher, S. Bose, Phys. Rev. A 74, 012321 (2006)

    Article  ADS  Google Scholar 

  39. A. Kay, Phys. Rev. A 73, 032306 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Klaus Burgarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgarth, D.K., Giovannetti, V. (2014). Dual- and Multi-rail Encoding. In: Nikolopoulos, G., Jex, I. (eds) Quantum State Transfer and Network Engineering. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39937-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39937-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39936-7

  • Online ISBN: 978-3-642-39937-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics