Skip to main content

Control of Diesel Engines

  • Chapter
  • First Online:
Engine Modeling and Control
  • 5825 Accesses

Abstract

The main components, the main control tasks and a resulting control-oriented block diagram for turbocharged diesel engines were already discussed in Sect. 1.3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akihama K, Takatori Y, Inagaki K, Sasaki S, Dean A (2001) Mechanism of the smokeless rich diesel combustion by reducing temperature. In: SAE Technical paper Series, Warrendale, PA, 2001-01-0655

    Google Scholar 

  • Alfieri E, Amstutz A, Guzzella L (2009) Gain-scheduled model-based feedback control of the air/fuel ratio in diesel engines. Control Engineering Practice – CEP 17:1417–1425

    Google Scholar 

  • Barba C (2001) Verbrennungskenntwerte aus Indizierdaten zur Prognose und Simulation des Verbrennungsablaufs. Dissertation. Zürich

    Google Scholar 

  • van Basshuysen R, Schäfer F (2007) Handbuch Verbrennungsmotor, 4th edn. Vieweg, Wiesbaden

    Google Scholar 

  • Bauder R, Gruber M, Michels E, Zaccheo-Giovanni P, Schiffgens HJ, Wimmer W (2006) The new audi 4.2 l v8 tdi-engine. part 1: Design and mechanics. part 2: Thermodynamics, application and exhaust after-treatment. MTZ worldwide 66(10 & 11):2–5 & 29–32

    Google Scholar 

  • Benz M (2010) Model-based optimal emission control of diesel engines. PhD thesis, ETH, Zürich

    Google Scholar 

  • Benz M, Onder C, Guzzella L (2010) Engine emission modeling using a mixed physics and regression approach. Journal of engineering for gas turbines and power 132(4)

    Google Scholar 

  • Birk M, Bleile T, Kraus B (2003) Modellbasierte Funktionen im Luftsystem des Dieselmotors. In: 4. Symposium Steuerungsysteme für den Antriebsstrang von Kraftfahrzeugen, Berlin, Germany

    Google Scholar 

  • Brengtsson J (2004) Closed-loop control of the HCCI engine dynamics. PhD thesis, Dept. of Automatic Control, Lund

    Google Scholar 

  • Canova M, Midlam-Mohler S, Pisu P, Soliman A (2010) Model-based fault detection and isolation for a diesel lean nox trap aftertreatment system. Control engineering practice 18(11):1307–1317

    Google Scholar 

  • Catanese A, Landsmann G, Neunteufl K, Stolz M (2009) An optimized approach for closed-loop combustion control of low-nox diesel engines. In: 7th Symposium Powertrain Control Systems for Motor Vehicles, Berlin, Germany, pp 347–358

    Google Scholar 

  • Caton P, Simon A, Gerdes J, Edwards C (2003) Residual-effected homogeneous charge compression ignition at a low compression ratio using exhaust reinduction. International Journal of Engine Research 4(3):163–177

    Google Scholar 

  • Chiang CJ, Stefanopoulou A, Jankovic M (2007) Nonlinear observer-based control of load transitions in homogeneous charge compression ignition engines. IEEE Trans on Control Systems Technology 15(3):438–448

    Google Scholar 

  • Chmela F, Orthaber G (1999) Rate of heat release prediction for direct injection diesel engines based on purely mixing controlled combustion. SAE transactions 108(3):152–160

    Google Scholar 

  • Chmela F, Dimitrov D, Pirker G,Wimmer A (2006) A consistent simulation methodology for combustion in piston engines. MTZ worldwide 67(6):24–28

    Google Scholar 

  • Christen U, Vantine K, Collings N (2001) Event-based mean-value modeling of DI diesel engines for controller design. SAE Transactions 110:1472–1482

    Google Scholar 

  • Eijk v, Hakstege B, Ruhkamp L (2011) The paccar mx engine for heavy duty trucks in north america. ATZautotechnology 11(3):50–57

    Google Scholar 

  • Elsener M, Geering H, Jaussi F, Koebel M, Kröcher O, Mangold M, Onder C, Röthlisberger R, Schär C (2003) Development and evaluation of a denox system based on urea scr. MTZ worldwide 64(11):28–31

    Google Scholar 

  • Gärtner U (2001) Die Simulation der Stickoxid Bildung in Nutzfahrzeug-Dieselmotoren. PhD thesis, Technische Universität, Darmstadt

    Google Scholar 

  • Gärtner U (2009) Regelung der Abgasnachbehandlung von Nutzfahrzeug-Dieselmotoren. In: Elektronisches Management von Fahrzeugantrieben, Haus derTechnik, Darmstadt, Germany

    Google Scholar 

  • Gerhardt J, Höninger H, Bischof H (1998) A new approach to functional and software structure for engine management systems - Bosch ME97. In: SAE 980801, Aachen, Germany

    Google Scholar 

  • Guzzella L, Amstutz A (1998) Control of diesel engines. IEEE Control Systems 18(5):53–71

    Google Scholar 

  • Guzzella L, Onder C (2010) Introduction to modeling and control of internal combustion engine systems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Guzzella L, Boulouchos K, Tschanz F, Barro C (2012) Control-oriented modeling of soot emissions and model-based emission control. In: Heft R 558, FVV Informationstagung Motoren, Frühjahr 2012, pp 251–277

    Google Scholar 

  • Hadler J, Rudolph F, Dorenkamp R, Stehr H, Hilzendeger J, Kranzusch S (2008) Volkswagen’s new 2.0 l TDI engine for the most stringent emission standards. MTZ worldwide edition 69(5, 6):12–12, 54–59

    Google Scholar 

  • Hafner M (2002) Modellbasierte stationäre und dynamische Optimierung von Verbrennungsmotoren am Motorenprüfstand unter Verwendung neuronaler Netze. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 482. VDI Verlag, Düsseldorf

    Google Scholar 

  • Hafner M, Schüler M, Nelles O, Isermann R (2000) Fast neural networks for diesel engine control design. Control Engineering Practice – CEP 8:1211–1221

    Google Scholar 

  • Hinterberger C, Kaiser R, Olesen M (2006) 3d-simulation of soot loading and regeneration of diesel particulate filters. MTZ worldwide 67(4):2–5

    Google Scholar 

  • Hippe P (2006)Windup in Control: Its Effects and Their Prevention. Springer, Berlin

    Google Scholar 

  • Hoßfeld C, Kaiser R (2003) Soot loading in diesel particulate filtersystems. MTZ worldwide 64(9):6–9

    Google Scholar 

  • Hülser H, Cartus T, Roduner C, Pfahl U (2003) Electronics enables innovations in engine engineering. MTZ worldwide 64(1):13–16

    Google Scholar 

  • Hülser H, Schüßler M, Hollauf B, Breitschädel B (2011) Model-based control for highest nox conversion in scr catalysts. ATZelektronik worldwide 6(3):18–21

    Google Scholar 

  • Isermann R (1987) Digitale Regelsysteme, Band II: Stochastische Regelungen, Mehrgrößenregelungen, Adaptive Regelungen, Anwendungen. Springer, Berlin

    Google Scholar 

  • Isermann R (1989) Digital control systems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Isermann R (1991) Digital control systems, vol 2, 2nd edn. Springer, Berlin

    Google Scholar 

  • Isermann R,MünchhofM(2011) Identification of dynamic systems. Springer, Berlin

    Google Scholar 

  • Jeschke J (2002) Konzeption und Erprobung eines zylinderdruckbasierten Motormanagements für PKW-Dieselmotoren. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Universitätsbibliothek

    Google Scholar 

  • Jung M (2003) Mean-value modeling and robust control of the airpath of a turbocharged diesel engine. University of Cambridge

    Google Scholar 

  • Justi E (1938) Spezifische Wärme, Enthalpie, Entropie und Dissoziation technischer Gase. Springer, Berlin

    Google Scholar 

  • Kato N, Hameda Y, Kurachi H (1997) Performance of thick film nox sensor on diesel and gaosline engines. In: 1997 SAE International Congress and Exposition, Cobo Center, Detroit, Michigan, USA, 970858

    Google Scholar 

  • Ketfi-Cherif A, von Wissel D, Beurthey S, Sorinem M (2000) Modeling and control of a nox trap catalyst. SAE transactions 109(4):798–807

    Google Scholar 

  • Kimmich F (2004) Modellbasierte Fehlererkennung und Diagnose der Einspritzung und Verbrennung von Dieselmotoren. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 549, VDI Verlag, Düsseldorf

    Google Scholar 

  • Kirchen P, Boulouchos K (2008) Phänomenologisches Mittelwertmodell für Ruß in transientem Motorbetrieb. MTZ-Motortechnische Zeitschrift 69(7-8):624–631

    Google Scholar 

  • Knippschild C (2011) Zylinderindividuelle Regelung des Gaszustands bei Pkw-Dieselmotoren

    Google Scholar 

  • Kohlhase M (2011) Brennraumdruckbasiertes Motormanagement für Otto- und Dieselmotoren zur Verbrauchs- und Emissionsreduktion. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 743, VDI Verlag, Düsseldorf

    Google Scholar 

  • Kohlhase M, Isermann R (2009) Self-tuning extremum value control based on cylincer pressure sensors for direct injection spark ignition engines (in German). at -Automatisierungstechnik 57(1):23–31

    Google Scholar 

  • Kohlhase M, Pfeil K, Zimmerschied R, Isermann R (2008) Cylinder-pressure-based closed-loop-control of the (partial-) homogeneous diesel combustion for passenger cars using data-based nonlinear models. In: 9th International Symposium on Advanced Vehicle Control, Kobe, Japan

    Google Scholar 

  • Konstandopoulos A, Skaperdas E, Masoudi M (2002) Microstructural properties of soot deposits in diesel particulate traps. SAE TRANSACTIONS 111(4):434–442

    Google Scholar 

  • Kroll A, Bernd T, Trott S (2000) Fuzzy network model-based fuzzy state controller design. IEEE Transactions on Fuzzy Systems 8(5):632–644

    Google Scholar 

  • Landsmann G (2010) Control of diesel engines – status and requirements (in German). In: Isermann R (ed) Elektronisches Management motorischer Fahrzeugantriebe,Vieweg-Teubner, Wiesbaden

    Google Scholar 

  • Larink J (2005) Zylinderdruckbasierte auflade-und abgasrückführregelung für pkwdieselmotoren. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Universitätsbibliothek

    Google Scholar 

  • Law D, Kemp D, Allen J, Kirkpatrick G, Copland T (2001) Controlled combustion in an ic-engine with a fully variable valve train. In: SAE Technical paper Series, Warrendale, 2001-01-0251

    Google Scholar 

  • Lee J, Edgar TF (2004) ISE tuning rule revisted. Automatica 40:1455–1458

    Google Scholar 

  • Lohmann B (1991a) Vollständige und teilweise Führungsentkopplung dynamischer Systeme durch konstante Zustandsrückführung. Automatisierungstechnik 39(10):376–378

    Google Scholar 

  • Lohmann B (1991b) Vollständige und teilweise Führungsentkopplung im Zustandsraum. Fortschr.-Ber. VDI Reihe 8, 244. VDI Verlag, Düsseldorf Magnussen B, Hjertager B (1977) Onmathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Int Symp on Comubstion 16(1):719–729

    Google Scholar 

  • MattesW, Mayr K, NeuhauserW, Steinparzer F (2004) TheBMWsix-cylinder diesel engine Euro 4 technology. MTZ worldwide edition 65(7–8):7–11

    Google Scholar 

  • Mayer A, Emig G, Gmehling B, Popovska N, Holemann K, Buck A (1996) Passive regeneration of catalyst-coated knitted-fiber diesel particulate traps. SAE transactions 105(4):36–44

    Google Scholar 

  • Merker G, Schwarz C, Stiesch G, Otto F (2006) Simulating combustion. Springer, Berlin

    Google Scholar 

  • MJ van Nieuwstadt, Kolmanovsky I, Moraal P, Stefanopoulou A, Jankovic M (2000) Egr-vgt control schemes: experimental comparison for a high-speed diesel engine. Control Systems, IEEE 20(3):63–79

    Google Scholar 

  • Mollenhauer K, Tschöke H (2010) Handbook of diesel engines. Springer, Berlin

    Google Scholar 

  • Motz S, Naber D, Krüger M, Gerhardt J (2011) Approaches for optimizing the transient behavior of diesel engines in terms of emissions and fuel consumption. In: 11. Internationales Stuttgarter Symposium

    Google Scholar 

  • Mrosek M (2014) Modeling of diesel engines with high and low pressure EGR. Internal

    Google Scholar 

  • Report. Institute of Automatic Control, Technische Universität Darmstadt

    Google Scholar 

  • Mrosek M, Sequenz H, Isermann R (2010) Control oriented NOx and soot models for diesel engines. In: IFAC Symposium Advances in Automotive Control, Munich

    Google Scholar 

  • Mrosek M, Sequenz H, Isermann R (2011) Identification of emission measurement dynamics for diesel engines. In: IFAC Worldcongress, Milano, Italy

    Google Scholar 

  • Nelles O (2001) Nonlinear system identification. Springer, Heidelberg

    Google Scholar 

  • Nieuwstadt M, Upadjyay D (2000) Control of urea SCR systems for US diesel applications. Oil and gas science and technology 66(4):655–665

    Google Scholar 

  • Nitsche R, Bleile T, Birk M, Dieterle W, Rothfuß R (2004) Modellbasierte Ladedruckregelung eines PKW-Dieselmotors. In: AUTOREG 2004, VDI, Wiesloch, Germany, vol VDI-Berichte 1828

    Google Scholar 

  • Nitzke H, Rebohl T, Jelden H (1999) Emissionsoptimierte abgasrückführkonzepte und dynamische luftmassenerfassung für direkteinspritzende dieselmotoren. In: Symposium Steuerungsysteme für den Antriebsstrang, Berlin, Germany

    Google Scholar 

  • Pfeil K (2011) Ladedruck- und Luftmassenregelung von aufgeladenen Dieselmotoren mit lokal linearen Modellen und Optimierung des dynamischen Emissionsverhaltens im Rauchbetrieb. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 744, VDI Verlag, Düsseldorf

    Google Scholar 

  • Pfeil K, Zimmerschied R, Isermann R (2007a) Automated parameterization of the egr-/vgt-controller of turbo-charged diesel engines by means of nonlinear identification of the air- and exhaust manifold. In: 7. Internationales Stuttgarter Symposium. Automobil- und Motorentechnik, Stuttgart

    Google Scholar 

  • Pfeil K, Zimmerschied R, Isermann R (2007b) Nichtlineare Identifikation des Luftpfads von aufgeladenen Dieselmotoren und automatisierter AGR-/VTGReglerentwurf. at - Automatisierungstechnik 55

    Google Scholar 

  • Pischinger R, Kell M, Sams T (2009) Thermodynamik der Verbrennungskraftmaschinen, 3rd edn. Springer, Wien and New York

    Google Scholar 

  • Pöttker S, Eckert P, Merker G (2005) Homogeneous charge compression ignition with synthetic fuels. MTZ worldwide 66(12):27–29

    Google Scholar 

  • Rausen D, Stefanopoulou A, Kang JM, Eng J, Kuo TW (2005) A mean-value model for control of homogeneous charge compression ignition (HCCI) engines. J of Dyn Meas and Control 127:355–362

    Google Scholar 

  • Ravi N, Liao HH, Jungkunz A, Widd A, Gerdes J (2012) Model predictive control of HCCI using variable valve actuation and fuel injection. Control Engineering Practice 20(4):421–430

    Google Scholar 

  • Renninger P, Weber M, Pfeil K, Hofmann D, Isermann R (2005) Dynamic models and their application to heavy duty engine optimization. In: 14. Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, Germany, pp 1205–1222

    Google Scholar 

  • Renninger P, Weirich M, Pfeil K, Isermann R (2006) Optimierungsstrategien für den transienten Betrieb eines Dieselmotors innerhalb der Rauchbegrenzung. In: Motorenentwicklung auf dynamischen Prüfständen. ATZ/MTZ Konferenz, Wiesbaden, Germany

    Google Scholar 

  • Rether D, Bargende M, Lämmle C, Boulouchos K (2012) Verbrennung – Physikalisches Brennratenmodell für Dieselmotoren mit teilhomogener Ladung. MTZ - Motortechnische Zeitschrift 73(10):310

    Google Scholar 

  • Robert Bosch GmbH (ed) (2011) Automotive Handbook, 8th edn. Bentley publishers, Cambridge

    Google Scholar 

  • Rückert J, Richter F, Schloßer A, Abel D, Herrmann O, Pischinger S, Pfeifer A (2004) A model-based predictive attempt to control boost pressure and egr-rate in a heavy duty diesel engine. In: IFAC Symposium on Advances in Automotive Control, Salerno, Italy, pp 127–133

    Google Scholar 

  • SchärCM(2003) Control of a selective catalytic reduction process. Diss., Technische Wissenschaften ETH Zürich, Nr. 15221, 2003

    Google Scholar 

  • Schüler M (2001) Stationäre Optimierung der Motorsteuerung von PKWDieselmotoren mit Abgasturbolader durch Einsatz schneller neuronaler Netze. Fortschr.-Ber. VDI Reihe 12, 461. VDI Verlag, Düsseldorf

    Google Scholar 

  • Schüler M, Hafner M, Isermann R (2000) Model-based optimization of ic engines by means of fast neural networks. part 1: Modeling the engine and emission behavior. part 2: Static and dynamic optimisation of fuel consumption versus emissions. MTZ worldwide 45(10 & 11):29–32 & 28–31

    Google Scholar 

  • Seher D, Reichelt M, Wickert S (2003) Control strategy for nox-emission reduction with SCR. In: SAE Technical paper Series, Warrendale, 2003-01-3362

    Google Scholar 

  • Sequenz H (2013) Emission Modelling and Model-Based Optimisation of the Engine Control. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 1222. VDI Verlag, Düsseldorf

    Google Scholar 

  • Sequenz H, Isermann R (2011) Emission model structures for an implementation on engine control units. In: Preprints of the 18th IFACWorld Congress, Milano, Italy

    Google Scholar 

  • Stanglmaier R, Roberts C (1999) Homogeneous charge compression ignition (hcci): benefits, compromises, and future engine applications. SAE transactions 108(3):2138–2145

    Google Scholar 

  • Stein J, Dürnholz M, Wirbeleit F, Kopp C, Benz C (2004) Homogene dieselmotorische verbrennung zur darstellung niedrigster emissionen. In: 13. Aachener Kolloquium Fahrzeug-und Motorentechnik

    Google Scholar 

  • Stiesch G (2003) Modeling Engine Spray and Combustion Processes. Springer, Berlin

    Google Scholar 

  • Suzuki H, Koike N, Ishi H, OdakaM(1997) Exhaust purification of diesel engines by homogeneous charge with compression ignition. In: SAE Technical paper Series, Warrendale, PA, 970313

    Google Scholar 

  • Tayamon S, adn TWigren DZ, Carlsson B (2011) Nonlinear black box identification of a selective catalytic reduction system. In: Preprints of the 18th IFAC World Congress, Milano, Italy

    Google Scholar 

  • Traver M, Atkinson R, Atkinson C (1999) Neural network-based diesel engine emissions prediction using in-cylinder combustion pressure. SAE transactions 108(4):1166–1180

    Google Scholar 

  • Wang Y, Haskara I, Yaniv O (2011) Quantitive feedback design of air and boost pressure control system for turbocharged engines. Control Engineering Practice – CEP 19(6):626–637

    Google Scholar 

  • WeißbäckW, Csat´o J, Glensvig M, Sams T, Herzog P (2003) Alternative combustion. an approach for future hsdi diesel engines. MTZ worldwide 64(12):17–20

    Google Scholar 

  • Weirich M, Wassenhoven K, Kemmner M (2006) Die Thermodynamikentwicklung des neuen Mercedes-Benz Medium Duty Nutzfahrzeugmotors für das Abgasgesetz EPA’07. 15. In: Aachener Kolloquium Fahrzeug- und Motorentechnik

    Google Scholar 

  • Wellers M, Elicker M (2004) Regelung der AGR-Rate und des Ladedrucks mit Hilfe eines nichtlinearen modellbasierten prädiktiven Reglers. In: AUTOREG 2004, VDI, Wiesloch, Germany, vol VDI-Berichte 1828

    Google Scholar 

  • Weßlau M, Bargende M, Haas S, Boulouchos K, Barroso G, Escher A (2006) Homogeneous diesel combustion process for reducing emissions. MTZ worldwide 67(10):21–24

    Google Scholar 

  • Wright R, Kravaris C (2005) Two-degree-of-freedom output feedback controllers for nonlinear systems. Chemical Engineering Science 60:4323–4336

    Google Scholar 

  • Zahn S (2012) Arbeitsspielaufgelöste Modellbildung und Hardware-in-the-Loop-Simulation von Pkw-Dieselmotoren mit Abgasturbolader. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 760. VDI Verlag, Düsseldorf

    Google Scholar 

  • Zimmerschied R (2008) Identifikation nichtlinearer Prozesse mit dynamischen lokalaffinen Modellen. Dissertation Technische Universität Darmstadt. Fortschr.-Ber.VDI Reihe 8, 1150, VDI Verlag, Düsseldorf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Isermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isermann, R. (2014). Control of Diesel Engines. In: Engine Modeling and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39934-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39934-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39933-6

  • Online ISBN: 978-3-642-39934-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics