Skip to main content

Engine-Control Methods and Calibration

  • Chapter
  • First Online:
Engine Modeling and Control

Abstract

The design and implementation of engine control functions has developed into a sophisticated and labor-intensive procedure. This is for many reasons, among them the high multi-variable complexity of engine control, the high performance requirements of suppliers, manufacturers and customers, and legislative certification limits for fuel consumption and emissions, and competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann J (1983) Abtastregelung, vol 1 and 2, 2nd edn. Springer, Berlin

    Google Scholar 

  • Antonion A (2006) Digital signal processing. McGraw Hill, New York

    Google Scholar 

  • Ã…ström, Wittenmark B (1997) Computer-controlled systems – theory and design. Prentice Hall, Upper Saddle River

    Google Scholar 

  • ATZ extra (2013) 10 years AUTOSAR. The worldwide automotive standard for E/E-systems. Special issue. Automobiltechnische Zeitschrift. Springer Vieweg/Springer Fachmedien Wiesbaden GmbH, Wiesbaden

    Google Scholar 

  • AUTOSAR (2012) Automotive Open System Architecture. www.autosar.org

  • Bäck T (1996) Evolutionary Algorithms in Theory and Practice: Evolution Strategies,Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York

    Google Scholar 

  • Balzert H (ed) (1998) Lehrbuch der Software-Technik, vol 2. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Böhm B (1979) Guidelines for verifying and validating software requirements and design specifications. Euro-IFIP, North-Holland

    Google Scholar 

  • Borgeest K (2008) Elektronik in der Fahrzeugtechnik. Vieweg, Wiesbaden

    Google Scholar 

  • BRD (ed) (1997) V-Modell-Entwicklungsstandard für IT-Systeme des Bundes. http://www.v-modell.iabg.de/um97.htm

  • BRD (ed) (2004) V-Modell-XT. http://v-modell.iabg.de

  • Bröhl AP (ed) (1995) Das V-Modell - Der Standard für Softwareentwicklung, 2nd edn. Oldenbourg, München

    Google Scholar 

  • Cuesta F, Ollero A (2004) Fuzzy control of reactive navigation with stability analysis based on conicity and Lyapunov theory. Control Engineering Practice – CEP 12:625–638

    Google Scholar 

  • Cunningham E (1992) Digital filtering – an introduction. Houghton Mifflin, Boston

    Google Scholar 

  • Davis L (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dennis J, Schnabel R (1996) Numerical methods for unconstrained optimization and nonlinear equations. Classics in applied mathematics 16, Siam, Philadelphia

    Google Scholar 

  • DIN 19226 (1994) Control technology. Terminology. Beuth Verlag, Berlin

    Google Scholar 

  • Dorf R, Bishop R (2010) Modern control systems, 12th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Droeschel W, Wiemers M (eds) (1999) Das V-Modell 97 – Der Standard für die Entwicklung von IT-Systemen mit Anleitung für den Praxiseinsatz. Oldenburg Verlag, München

    Google Scholar 

  • dSpace (2011) dSpace catalogue 2011. dSpace GmbH, Paderborn

    Google Scholar 

  • ETAS (2011) ETAS catalogue 2011. ETAS GmbH, Stuttgart

    Google Scholar 

  • Fink A (2006) Nonlinear control based on local linear neuro-fuzzy models. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 8, 1096. VDI Verlag, Düsseldorf

    Google Scholar 

  • Fisher D, Seborg D (1976) Multivariable computer control. North Holland, Amsterdam

    Google Scholar 

  • Föllinger O (2013) Regelungstechnik, 11th edn. VDE Verlag, Offenburg

    Google Scholar 

  • Franklin G, Powell J (2006) Feedback control of dynamic systems, 5th edn. Pearson-Prentic-Hall, Upper Saddle River

    Google Scholar 

  • Gen M, Cheng R (1997) Genetic algorithms and engineering design

    Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic press, Salt Lake city, UT

    Google Scholar 

  • Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Reading, MA

    Google Scholar 

  • Grünbacher E, Langthaler P, del Re L, Kokal H, Schmidt M, Paulweber M (2006) Goal oriented experiment planning for the optimal use of dynamical engine test benches. MTZ worldwide 67:28–31

    Google Scholar 

  • Hafner M (2002) Modellbasierte stationäre und dynamische Optimierung von Verbrennungsmotoren am Motorenprüfstand unter Verwendung neuronaler Netze. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 482. VDI Verlag, Düsseldorf

    Google Scholar 

  • Hafner M, Schüler M, Nelles O, Isermann R (2000) Fast neural networks for diesel engine control design. Control Engineering Practice – CEP 8:1211–1221

    Google Scholar 

  • Heinecke H, Schnelle KP, Fennel H, Bortolazzi J, Lundh L, Leflour J, Maté JL, Nishikawa K, Scharnhorst T (2004) AUTomotive Open System ARchitecture-an industry-wide initiative to manage the complexity of emerging automotive E/Earchitectures. In: SAE 2004 Convergence, pp 325–332

    Google Scholar 

  • Hoschek J, Lasser D (1993) Fundamentals of computer-aided geometric design. AK Peters, Wellesley, MA

    Google Scholar 

  • Ingber L (1996) Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics 25:33–54

    Google Scholar 

  • Isermann R (1980) Beispiele für die Fehlerdiagnose mittels Parameterschätzung. Automatisierungstechnik – at 37:342–343, 445–447

    Google Scholar 

  • Isermann R (1989) Digital control systems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Isermann R (1991) Digital control systems, vol 2, 2nd edn. Springer, Berlin

    Google Scholar 

  • Isermann R (1999) Mechatronische Systeme. Springer, Berlin

    Google Scholar 

  • Isermann R (2005) Mechatronic systems – fundamentals, 2nd edn. Springer, London

    Google Scholar 

  • Isermann R, Hafner M (2001) Mechatronic combustion engines – from modeling to optimal control. European Journal of Control 7:220–247

    Google Scholar 

  • Isermann R, Münchhof M (2011) Identification of dynamic systems. Springer, Berlin

    Google Scholar 

  • Isermann R, Lachmann KH, Matko D (1992) Adaptive control systems. Prentice Hall International UK, London

    Google Scholar 

  • Kiffmeier U, Köster L, Meyer M, Witke C (1999) Automatic prodective code generation for electronic control units. Automatisierungstechnik – at 47:295–304

    Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science, New Series 220(4598):671–680

    Google Scholar 

  • Kirschke-Biller F (2011) Autosar – a worldwide standard current developments, rollout and outlook. In: 15th International VDI Congress Electronic Systems for Vehicles, Baden-Baden, Germany

    Google Scholar 

  • Kötter H (2008) Innovative Motorvermessung. Schnelle Motorvermessung mit optimierten Testsignalen. FVV Heft 853. FVV, Frankfurt

    Google Scholar 

  • Kuder J, Kruse T (2000) Parameteroptimierung an Ottomotoren mit Direkteinspritzung. Motortechnische Zeitschrift – MTZ 61(6)

    Google Scholar 

  • Kuo B (ed) (1995) Digital Control Systems, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Leonhard W (1996) Control of electrical drives, 2nd edn. Springer, Berlin

    Google Scholar 

  • Liggesmeyer P (ed) (2002) Software-Qualität: Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Lyshevski S (2000) Electromechanical systems, electric machines, and applied mechatronics. CRC Press, Boca Raton, FL

    Google Scholar 

  • Martyr A, Plint M (2007) Engine testing. Theory and practice, 3rd edn. SAE International, Warrendale

    Google Scholar 

  • Mesarovic M (1960) The control of multivariable systems. J. Wiley, New York

    Google Scholar 

  • Mhatre S, Brosilow C (2000) Multivariable model state feedback: computationally simple, easy-to-tome alternative to mpc. AIChE Journal 46(8):1566–1580

    Google Scholar 

  • Michalewicz Z, Janikow C, Krawczyk J (1992) A modified genetic algorithm for optimal control problems. Computers and Mathematics with Applications 23(12):83–94

    Google Scholar 

  • Mitterer A, Zuber-Goos F (2000) Modellgestützte Kennfeldoptimierung - ein neuer Ansatz zur Steigerung der Effizienz in der Steuergeräteapplikation. Automobiltechnische Zeitschrift – ATZ 102

    Google Scholar 

  • Nelles O (2001) Nonlinear system identification. Springer, Heidelberg

    Google Scholar 

  • Nelles O, Fink A (2000a) Grid-based look-up table optimization toolbox. In: 12th IFAC Symposium on System Identification (SYSID 2000), Santa Barbara, CA, USA

    Google Scholar 

  • Nelles O, Fink A (2000b) Tool zur Optimierung von Rasterkennfeldern. atp – Automatisierungstechnische Praxis 42(5):58–66

    Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimisation, 2nd edn. Springer, New York

    Google Scholar 

  • Ogata K (ed) (2008) Modern control engineering, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Pfeil K (2011) Ladedruck- und Luftmassenregelung von aufgeladenen Dieselmotoren mit lokal linearen Modellen und Optimierung des dynamischen Emissionsverhaltens im Rauchbetrieb. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 744, VDI Verlag, Düsseldorf

    Google Scholar 

  • Press W, Teukolsky W, Vetterling S, Flannery B (2007) Numerical recipes in C, 3rd edn. Cambrigde University Press, Cambrigde

    Google Scholar 

  • Pukelsheim F (2006) Optimal design of experiments. SIAM, Philadelphia

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart

    Google Scholar 

  • Robert Bosch GmbH (ed) (2011) Automotive Handbook, 8th edn. Bentley publishers, Cambridge

    Google Scholar 

  • Royce W (1970) Managing the development of large software projects. In: Proceed. IEEE, Wescon

    Google Scholar 

  • Schäfer S (2012) Modellbasierte Steuerung des Kühlkreislaufes einer Brennstoffzelle mit automatisiertem Test der Software. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 8, Nr. 1219 VDI Verlag, Düsseldorf

    Google Scholar 

  • Schaffnit J (2002) Simulation und Control Prototyping zur Entwicklung von Steuergerätefunktionen für aufgeladene Nutzfahrzeug-Dieselmotoren. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 492. VDI Verlag, Düsseldorf

    Google Scholar 

  • Schäuffele J, Zurawka T (2005) Automotive Software Engineering. SAE, Warrendale, PA

    Google Scholar 

  • Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. J.Wiley, New York

    Google Scholar 

  • Schmidt M, Kessel JA (1999) Model-based torque controller for dynamical engine test stands. In: American Control Conference, ACC 1999, San Diego, CA, USA

    Google Scholar 

  • Schmitt M (1995) Untersuchungen zur Realisierung mehrdimensionaler lernfähiger Kennfelder in Großserien-Steuergeräten. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 246. VDI Verlag, Düsseldorf

    Google Scholar 

  • Schulmeister U, Boßler M, Huber T, Johannaber M, Kruse T, Ulmer H (2007) Employment of advanced simulation methods in calibration and development process. In: 2nd International Symposium on Development Methodology, Wiesbaden, Germany

    Google Scholar 

  • Schwefel HP (1988) Evolutionary learning optimim-seeking on parallel computer architectures. In: Sydow A, Tzafestas S, Vichnevetsky R (eds) Int. symp. on systems analysis and simulation. Akademie der Wissenschaften der DDR, Akademie Verlag, Berlin, Germany, vol 1 Theory and foundations, pp 217–225

    Google Scholar 

  • Sequenz H (2013) Emission Modelling and Model-Based Optimisation of the Engine Control. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 1222. VDI Verlag, Düsseldorf

    Google Scholar 

  • Sequenz H, Isermann R (2011) Emission model structures for an implementation on engine control units. In: Preprints of the 18th IFACWorld Congress, Milano, Italy

    Google Scholar 

  • Sequenz H, Keller K, Isermann R (2012) Zur Identifikation mehrdimensionaler Kennfelder für Verbrennungsmotoren. Automatisierungstechnik 60(6):344–351

    Google Scholar 

  • Sinsel S (2000) Echtzeitsimulation von Nutzfahrzeug-Dieselmotoren mit Turbolader zur Entwicklung von Motormanagementsystemen. Logos, Doctoral thesis. University of Technology, Darmstadt. Berlin

    Google Scholar 

  • Soler N (2011) Model-based thickness and tension control in multi-stand cold rolling mills. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 8, 1180. VDI Verlag, Düsseldorf

    Google Scholar 

  • STARTS Guide (1989) The STARTS purchases Handbook: software tools for application to large real-time systems, 2nd edn. National Computing Centre Publications, Manchester

    Google Scholar 

  • Stuhler H, Kruse T (2003) Parametrierung der Motorsteuerungen. In: Isermann R (ed) Modellgestützte Steuerung, Regelung und Diagnose von Verbrennungsmotoren, Springer, Berlin, chap 3

    Google Scholar 

  • Tanaka K, Ikeda T,Wang H (1998) Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans on Fuzzy Systems 6(2):250–265

    Google Scholar 

  • Thaller G (ed) (2002) Software-Test-Verifikation und Validation. Heinz-Heise-Verlag, Hannover

    Google Scholar 

  • Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. VH Winston and Sons, Washington, DC

    Google Scholar 

  • Tran E (2007) Verification/validation/certification. In: Koopman P (ed) Topics in dependable embedded software, Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  • Unland S, Stuhler H, Stuber A (1998) Neue effiziente Applikationsverfahren für die physikalisch basierte Motorsteuerung ME7. Motortechnische Zeitschrift – MTZ 59

    Google Scholar 

  • Vas P (ed) (1990) Vector control of AC machines. Clarendon Press, Oxford

    Google Scholar 

  • VDI 2206 (2003) Design methodology for mechatronic systems. Beuth Verlag, Berlin

    Google Scholar 

  • Wernicke M, Rein J (2007) Integration of existing ECU software in the autosar architecture. ATZ-Elektronik (1):20–25

    Google Scholar 

  • Wolfram A, Vogt M (2002) Discrete-time filter algortihms for the computation of derivatives. Automatisierungstechnik – at 7:346–353

    Google Scholar 

  • Wright R, Kravaris C (2006) Two-degree-of-freedom output feedback controllers for discrete-time nonlinear systems. Chemical Engineering Science 61:4676–4688

    Google Scholar 

  • Zahn S (2012) Arbeitsspielaufgelöste Modellbildung und Hardware-in-the-Loop- Simulation von Pkw-Dieselmotoren mit Abgasturbolader. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 760. VDI Verlag, Düsseldorf

    Google Scholar 

  • Zimmerschied R,Weber M, Isermann R (2005) Statische und dynamische Motorvermessung zur Auslegung von Steuerkennfeldern - eine kurze Ãœbersicht. Automatisierungstechnik – at 53(2):87–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Isermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isermann, R. (2014). Engine-Control Methods and Calibration. In: Engine Modeling and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39934-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39934-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39933-6

  • Online ISBN: 978-3-642-39934-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics