Skip to main content

An Incremental Linear Programming Based Tool for Analyzing Gene Expression Data

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7975))

Included in the following conference series:

  • 1748 Accesses

Abstract

The availability of large volumes of gene expression data from microarray analysis (cDNA and oligonucleotide) has opened a new door to the diagnoses and treatments of various diseases based on gene expression profiling. In this paper, we discuss a new profiling tool based on linear programming. Given gene expression data from two subclasses of the same disease (e.g. leukemia), we are able to determine efficiently if the samples are linearly separable with respect to triplets of genes. This was left as an open problem in an earlier study that considered only pairs of genes as linear separators. Our tool comes in two versions - offline and incremental. Tests show that the incremental version is markedly more efficient than the offline one. This paper also introduces a gene selection strategy that exploits the class distinction property of a gene by separability test by pairs and triplets. We applied our gene selection strategy to 4 publicly available gene-expression data sets. Our experiments show that gene spaces generated by our method achieves similar or even better classification accuracy than the gene spaces generated by t-values, FCS(Fisher Criterion Score) and SAM(Significance Analysis of Microarrays).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  2. van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A.M., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    Article  Google Scholar 

  3. Khan, J., Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature medicine 7(6), 673–679 (2001)

    Article  Google Scholar 

  4. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue classification with gene expression profiles. Journal of Computational Biology 7(3-4), 559–583 (2000)

    Article  Google Scholar 

  5. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Science USA, 96, 6745–6750 (1999)

    Google Scholar 

  6. Kim, S., Dougherty, E.R., Barrera, J., Chen, Y., Bittner, M.L., Trent, J.M.: Strong feature sets from small samples. Journal of Computational Biology 9, 127–146 (2002)

    Article  Google Scholar 

  7. Unger, G., Chor, B.: Linear separability of gene expression data sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7, 375–381 (2010)

    Article  Google Scholar 

  8. Alam, M.S., Panigrahi, S., Bhabak, P., Mukhopadhyay, A.: A multi-gene linear separability of gene expression data in linear time. In: Short Abstracts in ISBRA 2010: 6th International Symposium on Bioinformatics Research and Applications, pp. 51–54, May 23-26, Connecticut (2010)

    Google Scholar 

  9. Megiddo, N.: Linear-time algorithms for linear programming in R 3 and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyer, M.E.: Linear time algorithms for two- and three-variable linear programs. SIAM J. Comput. 13(1), 31–45 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, D.V., Rocke, D.M.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18(1), 39–50 (2002)

    Article  Google Scholar 

  13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    Google Scholar 

  14. Zhang, D., Chen, S., Zhou, Z.H.: Constraint score: A new filter method for feature selection with pairwise constraints. Pattern Recogn. 41(5), 1440–1451 (2008)

    Article  MATH  Google Scholar 

  15. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98(9), 5116–5121 (2001)

    Article  MATH  Google Scholar 

  16. Gil, C., Jun, L., Balasubramanian, N., Robert, T., Virginia, T.: In: ”Significance Analysis of Microarrays” Users guide and technical document. Stanford University, Stanford CA 94305

    Google Scholar 

  17. Lu, Y., Han, J.: Cancer classification using gene expression data. Inf. Syst. 28(4), 243–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gordon, G.J., Jensen, R.V., Hsiao, L.L., Gullans, S.R., Blumenstock, J.E., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma. Cancer Research 62(17), 4963–4967 (2002)

    Google Scholar 

  19. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30, 41–47 (2002)

    Article  Google Scholar 

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11, 11–18 (2009)

    Article  Google Scholar 

  21. Platt, J.C.: In: Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  22. Bayesian network classifiers in WEKA. Internal Notes 11(3), 1–23 (2004)

    Google Scholar 

  23. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  24. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panigrahi, S.C., Alam, M.S., Mukhopadhyay, A. (2013). An Incremental Linear Programming Based Tool for Analyzing Gene Expression Data. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39640-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39640-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39639-7

  • Online ISBN: 978-3-642-39640-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics