Skip to main content

Applications of Electrochemiluminescence

  • Chapter
  • First Online:
Electrogenerated Chemiluminescence

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

The development of electrochemiluminescence (ECL) applications is a growing field, having the potential advantages of ECL over conventional chemiluminescence. ECL has found various applications in immunoassays, DNA probe assays, and aptasensors by employing ECL-active species as labels on biological molecules. The recent use of ECL to detect many chemically, biochemically, clinically, and environmentally important analytes is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludvik J (2011) DC-electrochemiluminescence (ECL with a coreactant)-principle and applications in organic chemistry. J Solid State Electrochemy 15(10):2065–2081. doi:10.1007/s10008-011-1546-x

    CAS  Google Scholar 

  2. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. doi:10.1039/b923679c

    CAS  Google Scholar 

  3. Bard AJ, Debad JD, Leland JK, Sigal GB, Wilbur JL, Wohlsatdter JN (2000) Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, vol 11. John Wiley & Sons Inc, New York

    Google Scholar 

  4. Cruser SA, Bard AJ (1967) Concentration-intensity relationships in electrogenerated chemiluminescence. Anal Lett 1(1):11–17

    CAS  Google Scholar 

  5. McCord P, Bard AJ (1991) Electrogenerated chemiluminescence: Part 54. Electrogenerated chemiluminescence of ruthenium(II) 4,4′-diphenyl-2,2′-bipyridine and ruthenium(II) 4,7-diphenyl-1,10-phenanthroline systems in aqueous and acetonitrile solutions. J Electroanal Chem Interfacial Electrochem 318(12):91–99

    CAS  Google Scholar 

  6. Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(23):7109–7113. doi:10.1021/ac048782s

    Google Scholar 

  7. Lu Y, Young J, Meng YG (2007) Electrochemiluminescence to detect surface proteins on live cells. Curr Opin Pharmacol 7(5):541–546

    CAS  Google Scholar 

  8. Kurita R, Arai K, Nakamoto K, Kato D, Niwa O (2010) Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for sub-pM detection. Anal Chem 82(5):1692–1697

    Google Scholar 

  9. Wu Y, Shi H, Yuan L, Liu S (2010) A novel electrochemiluminescence immunosensor via polymerization-assisted amplification. Chem Comm 46(41):7763–7765. doi:10.1039/c0cc02741c

    CAS  Google Scholar 

  10. Gan N, Hou J, Hu F, Cao Y, Li T, Guo Z, Wang J (2011) A renewable and ultrasensitive electrochemiluminescence immunosenor based on magnetic RuL@SiO2-Au similar to RuL-Ab2 sandwich-type nano-immunocomplexes. Sensors 11(8):7749–7762. doi:10.3390/s110807749

    CAS  Google Scholar 

  11. Qian J, Zhou Z, Cao X, Liu S (2010) Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)3 2+-encapsulated silica nanosphere labels. Anal Chim Acta 665(1):32–38. doi:10.1016/j.aca.2010.03.013

    CAS  Google Scholar 

  12. Wilson R, Barker MH, Schiffrin DJ, Abuknesha R (1997) Electrochemiluminescence flow injection immunoassay for atrazine. Biosens Bioelectron 12(4):277–286. doi:10.1016/s0956-5663(96)00067-x

    CAS  Google Scholar 

  13. Wu A-H, Sun J–J, Fang Y-M, Su X-L, Chen G-N (2010) Hot electron induced cathodic electrochemiluminescence at AuSb alloy electrode for fabricating immunosensor with self-assembled monolayers. Talanta 82(4):1455–1461. doi:10.1016/j.talanta.2010.07.017

    CAS  Google Scholar 

  14. Arai K, Takahashi K, Kusu F (1999) An electrochemiluminescence flow through-cell and its applications to sensitive immunoassay using N-(aminobutyl)-N-ethylisoluminol. Anal Chem 71(11):2237–2240. doi:10.1021/ac9810361

    CAS  Google Scholar 

  15. Jie G, Liu P, Wang L, Zhang S (2010) Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochem Comm 12(1):22–26. doi:10.1016/j.elecom.2009.10.027

    CAS  Google Scholar 

  16. Marquette CA, Blum LJ (1998) Electrochemiluminescence of luminol for 2,4-D optical immunosensing in a flow injection analysis system. Sens Actuators, B 51(1–3):100–106. doi:10.1016/s0925-4005(98)00175-0

    CAS  Google Scholar 

  17. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10(16):2093–2100. doi:10.1039/c003994b

    CAS  Google Scholar 

  18. Gan N, Hou J, Hu F, Cao Y, Li T, Zheng L, Wang J (2011) Sandwich-type electrochemiluminescence immunosensor based on PDDA-G@Lu-Au composite for alpha-fetoprotein detection. Int J Electrochem Sci 6(11):5146–5160

    CAS  Google Scholar 

  19. Wilson R, Clavering C, Hutchinson A (2003) Electrochemiluminescence enzyme immunoassay for TNT. Analyst 128(5):480–485. doi:10.1039/b301942j

    CAS  Google Scholar 

  20. Wilson R, Clavering C, Hutchinson A (2003) Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT. J Electroanal Chem 557:109–118. doi:10.1016/s0022-0728(03)00353-x

    CAS  Google Scholar 

  21. Egashira N, S-i Morita, Hifumi E, Mitoma Y, Uda T (2008) Attomole detection of hemagglutinin molecule of influenza virus by combining an electrochemiluminescence sensor with an immunoliposome that encapsulates a Ru complex. Anal Chem 80(11):4020–4025

    CAS  Google Scholar 

  22. Wang X, Bobbitt DR (1999) In situ cell for electrochemically generated Ru(bpy)3 3+-based chemiluminescence detection in capillary electrophoresis. Anal Chim Acta 383(3):213–220

    CAS  Google Scholar 

  23. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. doi:10.1021/cr068083a

    CAS  Google Scholar 

  24. Lin JM, Yamada M (1998) Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay. Microchem J 58(1):105–116. doi:10.1006/mchj.1997.1539

    CAS  Google Scholar 

  25. Xu XHN, Jeffers RB, Gao JS, Logan B (2001) Novel solution-phase immunoassays for molecular analysis of tumor markers. Analyst 126(8):1285–1292. doi:10.1039/b104180k

    CAS  Google Scholar 

  26. Qian J, Zhang C, Cao X, Liu S (2010) Versatile immunosensor using a quantum dot coated cilica nanosphere as a label for signal amplification. Anal Chem 82(15):6422–6429. doi:10.1021/ac100558t

    CAS  Google Scholar 

  27. Wei H, Liu J, Zhou L, Li J, Jiang X, Kang J, Yang X, Dong S, Wang E (2008) Ru(bpy)3 2+-doped silica nanoparticles within layer-by-layer biomolecular coatings and their application as a biocompatible electrochemiluminescent tag material. Chem Eur J 14(12):3687–3693. doi:10.1002/chem.200701518

    CAS  Google Scholar 

  28. Wu YY, Li T, Liang H, Xue J (2005) Separation and determination of bupivacaine in plasma by capillary electrophoresis with tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence detection. Luminescence 20(4–5):352–357. doi:10.1002/bio.855

    CAS  Google Scholar 

  29. Xu YH, Gao Y, Wei H, Du Y, Wang EK (2006) Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes. J Chromatogr A 1115(1–2):260–266. doi:10.1016/j.chroma.2006.02.084

    CAS  Google Scholar 

  30. Han B, Du Y, Wang E (2008) Simultaneous determination of pethidine and methadone by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II). Microchem J 89(2):137–141. doi:10.1016/j.microc.2008.01.007

    CAS  Google Scholar 

  31. Pan W, Liu YJ, Huang Y, Yao SZ (2006) Determination of difenidol hydrochloride by capillary electrophoresis with electrochemiluminescence detection. J Chromatogr B 831(1–2):17–23. doi:10.1016/j.jchromb.2005.11.020

    CAS  Google Scholar 

  32. Liu JF, Cao WD, Qiu HB, Sun XH, Yang XR, Wang EK (2002) Determination of sulpiride by capillary electrophoresis with end-column electrogenerated chemiluminescence detection. Clin Chem 48(7):1049–1058

    CAS  Google Scholar 

  33. Li JG, Zhao FJ, Ju HX (2006) Simultaneous electrochemiluminescence determination of sulpiride and tiapride by capillary electrophoresis with cyclodextrin additives. J Chromatogr B 835(1–2):84–89. doi:10.1016/j.jchromb.2006.03.017

    CAS  Google Scholar 

  34. Liu Y-M, Shi Y-M, Liu Z-L, Tian W (2010) A sensitive method for simultaneous determination of four macrolides by CE with electrochemiluminescence detection and its applications in human urine and tablets. Electrophoresis 31(2):364–370. doi:10.1002/elps.200900302

    CAS  Google Scholar 

  35. Yang R, Zeng H-J, Li J–J, Zhang Y, Li S-J, Qu L-B (2011) Capillary electrophoresis coupled with end-column electrochemiluminescence for the determination of ephedrine in human urine, and a study of its interactions with three proteins. Luminescence 26(5):374–379. doi:10.1002/bio.1336

    CAS  Google Scholar 

  36. Liu YM, Peng LF, Mei L, Liu LJ (2011) Determination of diastereoisomeric alkaloids in urine by capillary electrophoresis with electrochemiluminescence detection. Chin Chem Lett 22(2):197–200. doi:10.1016/j.cclet.2010.10.019

    CAS  Google Scholar 

  37. Huang Y-S, Chen S-N, Whang C-W (2011) Capillary electrophoresis-electrochemiluminescence detection method for the analysis of ibandronate in drug formulations and human urine. Electrophoresis 32(16):2155–2160. doi:10.1002/elps.201100202

    CAS  Google Scholar 

  38. Zheng XW, Zhang ZJ, Li BX (2001) Flow injection chemiluminescence determination of captopril with in situ electrogenerated Mn3+ as the oxidant. Electroanalysis 13(12):1046–1050. doi:10.1002/1521-4109(200108)13

    CAS  Google Scholar 

  39. Zheng XW, Qu YJ, Zhang ZJ, Zhang CM (2005) Highly sensitive electrogenerated chemiluminescence detecting ranitidine based on chemically modifying microenvironment of the chemiluminescence reaction. Electroanalysis 17(11):1008–1014. doi:10.1002/elan.200403210

    CAS  Google Scholar 

  40. Michel PE, Fiaccabrino GC, de Rooij NF, Koudelka-Hep M (1999) Integrated sensor for continuous flow electrochemiluminescent measurements of codeine with different ruthenium complexes. Anal Chim Acta 392(2–3):95–103

    CAS  Google Scholar 

  41. Liu YJ, Pan W, Liu Q, Yao SZ (2005) Study on the enhancement of Ru(bpy)3 2+ electrochemiluminescence by nanogold and its application for pentoxyverine detection. Electrophoresis 26(23):4468–4477. doi:10.1002/elps.200500391

    CAS  Google Scholar 

  42. Deng B, Yin H, Liu Y, Ning X (2011) Pharmacokinetics of propranolol hydrochlorid in human urine by capillary electrophoresis coupled with electrochemiluminescence. Anal Sci 27(1):55–59. doi:10.2116/analsci.27.55

    CAS  Google Scholar 

  43. Huang J, Sun J, Zhou X, You T (2007) Determination of atenolol and metoprolol by capillary electrophoresis with Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence detection. Anal Sci 23(2):183–188. doi:10.2116/analsci.23.183

    Google Scholar 

  44. Wang Y, Wu Q, Cheng M, Cai C (2011) Determination of beta-blockers in pharmaceutical and human urine by capillary electrophoresis with electrochemiluminescence detection and studies on the pharmacokinetics. J Chromatogr B 879(13–14):871–877. doi:10.1016/j.jchromb.2011.02.032

    CAS  Google Scholar 

  45. Li YH, Wang CY, Sun JY, Zhou YC, You TY, Wang EK, Fung YS (2005) Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta 550(1–2):40–46. doi:10.1016/j.aca.2005.06.045

    CAS  Google Scholar 

  46. Yin XB, Kang JZ, Fang LY, Yang XR (1055) Wang EK (2004) Short-capillary electrophoresis with electrochemiluminescence detection using porous etched joint for fast analysis of lidocaine and ofloxacin. J Chromatogr A 1–2:223–228. doi:10.1016/j.chroma.2004.09.001

    Google Scholar 

  47. Zhou X, Xing D, Zhu D, Tang Y, Jia L (2008) Development and application of a capillary electrophoresis-electrochemiluminescent method for the analysis of enrofloxacin and its metabolite ciprofloxacin in milk. Talanta 75(5):1300–1306. doi:10.1016/j.talanta.2008.01.040

    CAS  Google Scholar 

  48. Fang LY, Yin XB, Sun XH, Wang EK (2005) Determination of disopyramide in human urine by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II). Anal Chim Acta 537(1–2):25–30. doi:10.1016/j.aca.2005.01.020

    CAS  Google Scholar 

  49. Yuan J, Yin J, Wang E (2007) Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection. J Chromatogr A 1154(1–2):368–372. doi:10.1016/j.chroma.2007.02.024

    CAS  Google Scholar 

  50. Peng X, Wang Z, Li J, Le G, Shi Y (2008) Electrochemiluminescence detection of clarithromycin in biological fluids after capillary electrophoresis separation. Anal Lett 41(7):1184–1199. doi:10.1080/00032710802052528

    CAS  Google Scholar 

  51. Zhao XC, You TY, Qiu HB, Yan JL, Yang XR, Wang EK (2004) Electrochemiluminescence detection with integrated indium tin oxide electrode on electrophoretic microchip for direct bioanalysis of lincomycin in the urine. J Chromatogr B 810(1):137–142. doi:10.1016/j.jchromb.2004.07.018

    CAS  Google Scholar 

  52. Liang Y-D, Song J-F, Xu M (2007) Electrochemiluminescence from successive electro- and chemo-oxidation of rifampicin and its application to the determination of rifampicin in pharmaceutical preparations and human urine. Spectrochim Acta, Part A 67(2):430–436. doi:10.1016/j.saa.2006.07.036

    Google Scholar 

  53. Chiu HY, Lin ZY, Tu HL, Whang C-W (2008) Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. J Chromatogr A 1177(1):195–198. doi:10.1016/j.chroma.2007.11.042

    CAS  Google Scholar 

  54. Cai Q, Chen X, Qiu B, Lin Z (2011) Electrochemiluminescent detection method for glyphosate in soybean on carbon fiber-ionic liquid paste electrode. Chin J Chem 29(3):581–586

    CAS  Google Scholar 

  55. Wei W, Wei M, Cai Z, Liu S (2011) Determination of spectinomycin in human urine using ce coupled with electrogenerated chemiluminescence. Chromatographia 74(3–4):349–353. doi:10.1007/s10337-011-2060-0

    CAS  Google Scholar 

  56. Deng B, Lu H, Li L, Shi A, Kang Y, Xu Q (2010) Determination of the number of binding sites and binding constant between diltiazem hydrochloride and human serum albumin by ultrasonic microdialysis coupled with online capillary electrophoresis electrochemiluminescence. J Chromatogr A 1217(28):4753–4756. doi:10.1016/j.chroma.2010.05.021

    CAS  Google Scholar 

  57. Sun XH, Liu JF, Cao WD, Yang XR, Wang EK, Fung YS (2002) Capillary electrophoresis with electrochemiluminescence detection of procyclidine in human urine pretreated by ion-exchange cartridge. Anal Chim Acta 470(2):137–145. doi:10.1016/s0003-2670(02)00780-8

    CAS  Google Scholar 

  58. Sun Y, Zhang Z, Xi Z, Shi Z (2009) Determination of naproxen in human urine by high-performance liquid chromatography with direct electrogenerated chemiluminescence detection. Talanta 79(3):676–680. doi:10.1016/j.talanta.2009.04.048

    CAS  Google Scholar 

  59. Cao WD, Yang XR, Wang EK (2004) Determination of reserpine in urine by capillary electrophoresis with electrochemiluminescence detection. Electroanalysis 16(3):169–174. doi:10.1002/elan.200402777

    CAS  Google Scholar 

  60. Sun H, Li L, Su M (2010) Simultaneous determination of proline and pipemidic acid in human urine by capillary electrophoresis with electrochemiluminescence detection. J Clin Lab Anal 24(5):327–333. doi:10.1002/jcla.20284

    CAS  Google Scholar 

  61. Yuan JP, Li T, Yin XB, Guo L, Jiang XZ, Jin WR, Yang XR, Wang EK (2006) Characterization of prolidase activity using capillary electrophoresis with tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence detection and application to evaluate collagen degradation in diabetes mellitus. Anal Chem 78(9):2934–2938. doi:10.1021/ac051594x

    CAS  Google Scholar 

  62. Fu Z, Wang L, Wang Y (2009) Capillary electrophoresis-electrochemiluminescent detection of N, N-dimethyl ethanolamine and its application in impurity profiling and stability investigation of meclophenoxate. Anal Chim Acta 638(2):220–224. doi:10.1016/j.aca.2009.02.024

    CAS  Google Scholar 

  63. Yu C, Du H, You T (2011) Determination of imipramine and trimipramine by capillary electrophoresis with electrochemiluminescence detection. Talanta 83(5):1376–1380. doi:10.1016/j.talanta.2010.11.011

    CAS  Google Scholar 

  64. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless biosensors. Sens Actuators, B 139(1):214–221. doi:10.1016/j.snb.2009.01.020

    CAS  Google Scholar 

  65. Piao MH, Yang DS, Yoon KR, Lee SH, Choi SH (2009) Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles. Sensors 9(3):1662–1677

    CAS  Google Scholar 

  66. Xu ZA, Guo ZH, Dong SJ (2005) Electrogenerated chemiluminescence biosensor with alcohol dehydrogenase and tris(2,2′-bipyridyl)ruthenium (II) immobilized in sol-gel hybrid material. Biosens Bioelectron 21(3):455–461. doi:10.1016/j.bios.2004.10.032

    CAS  Google Scholar 

  67. Li M, Lee SH (2007) Analysis of monosaccharides by capillary electrophoresis with electrochemiluminescence detection. Anal Sci 23(11):1347–1349. doi:10.2116/analsci.23.1347

    CAS  Google Scholar 

  68. Dai H, Wu X, Xu H, Wang Y, Chi Y, Chen G (2009) A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode. Electrochim Acta 54(19):4582–4586. doi:10.1016/j.electacta.2009.03.042

    CAS  Google Scholar 

  69. Xiong Z-G, Li J-P, Tang L, Cheng Z-Q (2010) A novel electrochemiluminescence biosensor based on glucose oxidase immobilized on magnetic nanoparticles. Chin J Anal Chem 38(6):800–804. doi:10.3724/sp.j.1096.2010.00800

    CAS  Google Scholar 

  70. Zhu L, Li YX, Zhu GY (2002) A novel flow through optical fiber biosensor for glucose based on luminol electrochemiluminescence. Sens Actuators, B 86(2–3):209–214. doi:10.1016/s0925-4005(02)00173-9

    CAS  Google Scholar 

  71. Marquette CA, Blum LJ (1999) Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 381(1):1–10. doi:10.1016/s0003-2670(98)00703-x

    CAS  Google Scholar 

  72. Martínez-Olmos A, Ballesta-Claver J, Palma A, Valencia-Mirón MDC, Capitán-Vallvey L (2009) A portable luminometer with a disposable electrochemiluminescent biosensor for lactate determination. Sensors 9(10):7694–7710

    Google Scholar 

  73. Lei R, Wang X, Zhu S, Li N (2011) A novel electrochemiluminescence glucose biosensor based on alcohol-free mesoporous molecular sieve silica modified electrode. Sens Actuators, B 158(1):124–129. doi:10.1016/j.snb.2011.05.054

    CAS  Google Scholar 

  74. Ballesta Claver J, Valencia Miron MC, Capitan-Vallvey LF (2009) Disposable electrochemiluminescent biosensor for lactate determination in saliva. Analyst 134(7):1423–1432. doi:10.1039/b821922b

    CAS  Google Scholar 

  75. Haghighi B, Bozorgzadeh S (2011) Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 85(4):2189–2193. doi:10.1016/j.talanta.2011.07.071

    CAS  Google Scholar 

  76. Lin Z, Chen J, Chen G (2008) An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode. Electrochim Acta 53(5):2396–2401. doi:10.1016/j.electacta.2007.09.063

    CAS  Google Scholar 

  77. Qiu B, Lin Z, Wang J, Chen Z, Chen J, Chen G (2009) An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta 78(1):76–80. doi:10.1016/j.talanta.2008.10.067

    CAS  Google Scholar 

  78. Chen Z, Wang J, Lin Z, Chen G (2007) A new electrochemiluminescent sensing system for glucose based on the electrochemiluminescent reaction of bis- 3,4,6-trichloro-2-(pentyloxycarbonyl)-phenyl oxalate. Talanta 72(4):1410–1415. doi:10.1016/j.talanta.2007.01.051

    CAS  Google Scholar 

  79. Li G, Lian J, Zheng X, Cao J (2010) Electrogenerated chemiluminescence biosensor for glucose based on poly(luminol-aniline) nanowires composite modified electrode. Biosens Bioelectron 26(2):643–648. doi:10.1016/j.bios.2010.07.003

    Google Scholar 

  80. Wang CY, Huang HJ (2003) Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)3 2+-tripropylamine system. Anal Chim Acta 498(1–2):61–68. doi:10.1016/j.aca.2003.08.064

    CAS  Google Scholar 

  81. Marquette CA, Blum LJ (2003) Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline. Sens Actuators, B 90(1–3):112–117. doi:10.1016/s0925-4005(03)00046-7

    CAS  Google Scholar 

  82. Zhang L, Xu Z, Sun X, Dong S (2007) A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)(3)(2+)-Au nanoparticles aggregates. Biosens Bioelectron 22(6):1097–1100. doi:10.1016/j.bios.2006.03.026

    CAS  Google Scholar 

  83. Shan Y, Xu J–J, Chen H-Y (2010) Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen. Chem Comm 46(28):5079–5081. doi:10.1039/c0cc00837k

    CAS  Google Scholar 

  84. Zheng XW, Guo ZH, Zhang ZJ (2001) Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminol. Anal Chim Acta 441(1):81–86. doi:10.1016/s0003-2670(01)01090-x

    CAS  Google Scholar 

  85. Wang S, Yu J, Wan F, Ge S, Yan M, Zhang M (2011) Flow injection electrochemiluminescence determination of L-lysine using tris (2,2′-bipyridyl) ruthenium(II) (Ru(bpy)3 2+ on indium tin oxide (ITO) glass. Anal Meth 3(5):1163–1167. doi:10.1039/c0ay00632g

    Google Scholar 

  86. Fang L, Lue Z, Wei H, Wang E (2008) Quantitative electrochemiluminescence detection of proteins: Avidin-based sensor and tris(2,2′-bipyridine) ruthenium(II) label. Biosens Bioelectron 23(11):1645–1651. doi:10.1016/j.bios.2008.01.023

    CAS  Google Scholar 

  87. Yin XB, Qi B, Sun XP, Yang XR, Wang EK (2005) 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal Chem 77(11):3525–3530. doi:10.1021/ac0503198

    CAS  Google Scholar 

  88. Qiu B, Jiang X, Guo L, Lin Z, Cai Z, Chen G (2011) A highly sensitive method for detection of protein based on inhibition of Ru(bpy)3 2+/TPrA electrochemiluminescent system. Electrochim Acta 56(20):6962–6965. doi:10.1016/j.electacta.2011.06.016

    CAS  Google Scholar 

  89. Brandon DL (2011) Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay. Toxins 3(4):398–408

    CAS  Google Scholar 

  90. Qolizadeh MR, Ebrahim K, Rahbar B, Karami E, Rostamkhany H, Musavi SH (2011) The effect of choline supplementation on the level of plasma free fatty acids and beta-hydroxybutyrate during a session of prolonged exercise. Annals Bio Res 2(6):253–260

    CAS  Google Scholar 

  91. Wei W, Kang X, Deng H, Lu Z, Jie Z (2011) Analysis of choline in milk powder using electrogenerated chemiluminescence including a mechanism study. Anal Lett 44(8):1381–1391. doi:10.1080/00032719.2010.512681

    CAS  Google Scholar 

  92. Deng S, Lei J, Cheng L, Zhang Y, Ju H (2011) Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. Biosens Bioelectron 26(11):4552–4558. doi:10.1016/j.bios.2011.05.023

    CAS  Google Scholar 

  93. Tsafack VC, Marquette CA, Leca B, Blum LJ (1999) An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis. Analyst 125(1):151–155. doi:10.1039/a907709j

    Google Scholar 

  94. Sun L, Bao L, Hyun BR, Bartnik AC, Zhong YW, Reed JC, Pang DW, HcD Abrun, Malliaras GG, Wise FW (2008) Electrogenerated chemiluminescence from pbs quantum dots. Nano Lett 9(2):789–793

    Google Scholar 

  95. Dai H, Chi Y, Wu X, Wang Y, Wei M, Chen G (2009) Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron 25(6):1414–1419. doi: 101016/jbios200910042

    Google Scholar 

  96. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) New electrochemiluminescent biosensors combining polyluminol and an enzymatic matrix. Anal Bioanal Chem 394(4):971–980. doi:10.1007/s00216-009-2780-2

    CAS  Google Scholar 

  97. Jin J, Muroga M, Takahashi F, Nakamura T (2010) Enzymatic flow injection method for rapid determination of choline in urine with electrochemiluminescence detection. Bioelectrochem 79(1):147–151. doi:10.1016/j.bioelechem.2009.12.005

    CAS  Google Scholar 

  98. Ballesta-Claver J, Diaz Ortega IF, Valencia-Miron MC, Capitan-Vallvey LF (2011) Disposable luminol copolymer-based biosensor for uric acid in urine. Anal Chim Acta 702(2):254–261. doi:10.1016/j.aca.2011.06.054

    CAS  Google Scholar 

  99. Chen Z, Zu Y (2008) Selective detection of uric acid in the presence of ascorbic acid based on electrochemiluminescence quenching. J Electroanal Chem 612(1):151–155. doi:10.1016/j.jelechem.2007.09.018

    CAS  Google Scholar 

  100. Waseem A, Yaqoob M, Nabi A, Greenway GM (2007) Determination of thyroxine using tris(2,2′-bipyridyl)ruthenium(III)-NADH enhanced electrochemiluminescence detection. Anal Lett 40(6):1071–1083. doi:10.1080/00032710701298495

    CAS  Google Scholar 

  101. Liu X, Ju H (2008) Coreactant enhanced anodic electrocherniluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Anal Chem 80(14):5377–5382. doi:10.1021/ac8003715

    CAS  Google Scholar 

  102. Li F, Pang YQ, Lin XQ, Cui H (2003) Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes. Talanta 59(3):627–636. doi:10.1016/s0039-9140(02)00576-3

    CAS  Google Scholar 

  103. Zhao J, Chen M, Yu C, Tu Y (2011) Development and application of an electrochemiluminescent flow-injection cell based on CdTe quantum dots modified electrode for high sensitive determination of dopamine. Analyst 136(19):4070–4074. doi:10.1039/c1an15458c

    CAS  Google Scholar 

  104. Zhu LD, Li YX, Zhu GY (2002) Flow injection determination of dopamine based on inhibited electrochemiluminescence of luminol. Anal Lett 35(15):2527–2537. doi:10.1081/al-120016542

    CAS  Google Scholar 

  105. Xue L, Guo L, Qiu B, Lin Z, Chen G (2009) Mechanism for inhibition of/DBAE electrochemiluminescence system by dopamine. Electrochem Comm 11(8):1579–1582

    CAS  Google Scholar 

  106. Yu C, Yan J, Tu Y (2011) Electrochemiluminescent sensing of dopamine using CdTe quantum dots capped with thioglycolic acid and supported with carbon nanotubes. Microchim Acta 175(3–4):347–354. doi:10.1007/s00604-011-0666-4

    CAS  Google Scholar 

  107. Kang JZ, Yin XB, Yang XR, Wang EK (2005) Electrochemiluminescence quenching as an indirect method for detection of dopamine and epinephrine with capillary electrophoresis. Electrophoresis 26(9):1732–1736. doi:10.1002/elps.200410247

    CAS  Google Scholar 

  108. Yin X-B, Guo J-M, Wei W (2010) Dual-cloud point extraction and tertiary amine labeling for selective and sensitive capillary electrophoresis-electrochemiluminescent detection of auxins. J Chromatogr A 1217(8):1399–1406. doi:10.1016/j.chroma.2009.12.029

    CAS  Google Scholar 

  109. Guo W, Yuan J, Li B, Du Y, Ying E, Wang E (2008) Nanoscale-enhanced Ru(bpy)3 2+ electrochemiluminescence labels and related aptamer-based biosensing system. Analyst 133(9):1209–1213. doi:10.1039/b806301j

    CAS  Google Scholar 

  110. Chang PL, Lee KH, Hu CC, Chang HT (2007) CE with sequential light-emitting diodeinduced fluorescence and electro-chemiluminescence detections for the determination of amino acids and alkaloids. Electrophoresis 28(7):1092–1099. doi:10.1002/elps.200600546

    CAS  Google Scholar 

  111. Zhuang YF, Ju HX (2005) Determination of reduced nicotinamide adenine dinucleotide based on immobilization of tris(2,2′-bipyridyl) ruthenium(II) in multiwall carbon nanotubes/Nafion composite membrane. Anal Lett 38(13):2077–2088. doi:10.1080/00032710500259441

    CAS  Google Scholar 

  112. Liu SC, Liu YJ, Li J, Guo ML, Pan W, Yao SZ (2006) Determination of mefenacet by capillary electrophoresis with electrochemiluminescence detection. Talanta 69(1):154–159. doi:10.1016/j.talanta.2005.09.020

    CAS  Google Scholar 

  113. Yin J, Guo W, Du Y, Wang E (2006) Facile separation and determination of Aconitine alkaloids in traditional Chinese medicines by CE with tris(2,2′-bipyridyl) ruthenium(II)-based electrochemi-luminescence detection. Electrophoresis 27(23):4836–4841. doi:10.1002/elps.200600288

    CAS  Google Scholar 

  114. Yin J, Xu Y, Li J, Wang E (2008) Analysis of quinolizidine alkaloids in Sophora flavescens Ait. by capillary electrophoresis with tris(2,2’-bipyridyl) ruthenium (II)-based electrochemiluminescence detection. Talanta 75(1):38–42. doi:10.1016/j.talanta.2007.10.003

    Google Scholar 

  115. Chen Y, Lin Z, Chen J, Sun J, Zhang L, Chen G (2007) New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)3 2+/multi-wall-carbon-nanotube paste electrode. J Chromatogr A 1172(1):84–91. doi:10.1016/j.chroma.2007.09.049

    CAS  Google Scholar 

  116. Deng B, Xie F, Li L, Shi A, Liu Y, Yin H (2010) Determination of galanthamine in Bulbus Lycoridis Radiatae by coupling capillary electrophoresis with end-column electrochemiluminescence detection. J Sep Sci 33(15):2356–2360. doi:10.1002/jssc.201000140

    CAS  Google Scholar 

  117. Gao Y, Xu Y, Han B, Li J, Xiang Q (2009) Sensitive determination of verticine and verticinone in Bulbus Fritillariae by ionic liquid assisted capillary electrophoresis-electrochemiluminescence system. Talanta 80(2):448–453. doi:10.1016/j.talanta.2009.07.012

    CAS  Google Scholar 

  118. Wang Z, Duan N, Hun X, Wu S (2010) Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Anal Bioanal Chem 398(5):2125–2132. doi:10.1007/s00216-010-4146-1

    CAS  Google Scholar 

  119. Sun J, Du H, You T (2011) Determination of nicotine and its metabolite cotinine in urine and cigarette samples by capillary electrophoresis coupled with electrochemiluminescence. Electrophoresis 32(16):2148–2154. doi:10.1002/elps.201100075

    CAS  Google Scholar 

  120. Deng B, Ye L, Yin H, Liu Y, Hu S, Li B (2011) Determination of pseudolycorine in the bulb of lycoris radiata by capillary electrophoresis combined with online electrochemiluminescence using ultrasonic-assisted extraction. J Chromatogr B 879(13–14):927–932. doi:10.1016/j.jchromb.2011.03.002

    CAS  Google Scholar 

  121. Gao Y, Tian YL, Wang EK (2005) Simultaneous determination of two active ingredients in Flos daturae by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta 545(2):137–141. doi:10.1016/j.aca.2005.04.071

    CAS  Google Scholar 

  122. Yuan B, Zheng C, Teng H, You T (2010) Simultaneous determination of atropine, anisodamine, and scopolamine in plant extract by nonaqueous capillary electrophoresis coupled with electrochemiluminescence and electrochemistry dual detection. J Chromatogr A 1217(1):171–174. doi:10.1016/j.chroma.2009.11.008

    CAS  Google Scholar 

  123. Li M, Lee SH (2007) Determination of trimethylamine in fish by capillary electrophoresis with electrogenerated tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection. Luminescence 22(6):588–593. doi:10.1002/bio.1006

    CAS  Google Scholar 

  124. Guo Z, Gai P, Hao T, Duan J, Wang S (2011) Determination of malachite green residues in fish using a highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction. J Agr Food Chem 59(10):5257–5262. doi:10.1021/jf2008502

    CAS  Google Scholar 

  125. Lo W-Y, Baeumner AJ (2007) Evaluation of internal standards in a competitive nucleic acid sequence-based amplification assay. Anal Chem 79(4):1386–1392

    CAS  Google Scholar 

  126. Lo W-Y, Baeumner AJ (2007) RNA internal standard synthesis by nucleic acid sequence-based amplification for competitive quantitative amplification reactions. Anal Chem 79(4):1548–1554

    CAS  Google Scholar 

  127. Li Y, Qi H, Fang F, Zhang C (2007) Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl) ruthenium derivative tags. Talanta 72(5):1704–1709

    CAS  Google Scholar 

  128. Lee J-G, Yun K, Lim G-S, Lee SE, Kim S, Park J-K (2007) DNA biosensor based on the electrochemiluminescence of Ru(bpy)3 2+ with DNA-binding intercalators. Bioelectrochem 70(2):228–234

    CAS  Google Scholar 

  129. Chang Z, Zhou J, Zhao K, Zhu N, He P, Fang Y (2006) Ru(bpy)3 2+-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization. Electrochim Acta 52(2):575–580

    CAS  Google Scholar 

  130. Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(18):5379–5386. doi:10.1021/ac0495236

    CAS  Google Scholar 

  131. Wang H, Zhang C, Li Y, Qi H (2006) Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal Chim Acta 575(2):205–211. doi:10.1016/j.aca.2006.05.080

    CAS  Google Scholar 

  132. Bertolino C, MacSweeney M, Tobin J, Neill B, Sheehan MM, Coluccia S, Berney H (2005) A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridisation. Biosens Bioelectron 21(4):565–573

    CAS  Google Scholar 

  133. Firrao G (2005) Detection of DNA/DNA hybridization by electrogenerated chemiluminescence. Int J Env Anal Chem 85(9–11):609–612

    CAS  Google Scholar 

  134. Hsueh YT, Collins SD, Smith RL (1998) DNA quantification with an electrochemiluminescence microcell. Sens Actuators, B 49(12):1–4

    CAS  Google Scholar 

  135. Zhang J, Qi H, Li Y, Yang J, Gao Q, Zhang C (2008) Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Anal Chem 80(8):2888–2894. doi:10.1021/ac701995g

    CAS  Google Scholar 

  136. Spehar A-M, Koster S, Kulmala S, Verpoorte E, de Rooij N, Koudelka-Hep M (2004) The quenching of electrochemiluminescence upon oligonucleotide hybridization. Luminescence 19(5):287–295

    CAS  Google Scholar 

  137. Wu A-H, Sun JJ, Zheng RJ, Yang HH, Chen GN (2010) A reagentless DNA biosensor based on cathodic electrochemiluminescence at a C/C(x)O(1−x) electrode. Talanta 81(3):934–940. doi:10.1016/j.talanta.2010.01.040

    CAS  Google Scholar 

  138. Wang X, He P, Fang Y (2010) A solid-state electrochemiluminescence biosensing switch for detection of DNA hybridization based on ferrocene-labeled molecular beacon. J Lumin 130(8):1481–1484. doi:10.1016/j.jlumin.2010.03.016

    CAS  Google Scholar 

  139. Spehar-Deleze A-M, Schmidt L, Neier R, Kulmala S, de Rooij N, Koudelka-Hep M (2006) Electrochemiluminescent hybridization chip with electric field aided mismatch discrimination. Biosens Bioelectron 22(5):722–729. doi:10.1016/j.bios.2006.02.013

    CAS  Google Scholar 

  140. Miao W, Bard AJ (2003) Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2′-bipyridyl)ruthenium(II) labels. Anal Chem 75(21):5825–5834. doi:10.1021/ac034596v

    Google Scholar 

  141. Bruno JG, Parker JE, Holwitt E, Alls JL, Kiel JL (1998) Preliminary electrochemiluminescence studies of metal ion–bacterial diazoluminomelanin (DALM) interactions. J Biolumin Chemilumin 13(3):117–123

    CAS  Google Scholar 

  142. Boom R, Sol C, Weel J, Gerrits Y, de Boer M, Wertheim-van Dillen P (1999) A highly sensitive assay for detection and quantitation of human cytomegalovirus DNA in serum and plasma by PCR and electrochemiluminescence. J Clin Microbiol 37(5):1489–1497

    Google Scholar 

  143. Suzuki K, Yoshikawa T, Tomitaka A, Matsunaga K, Asano Y (2004) Detection of aerosolized varicella-zoster virus DNA in patients with localized herpes zoster. J Infec Dis 189. doi:10.1086/382029

  144. Zhu D, Xing D, Shen X, Liu J, Chen Q (2004) High sensitive approach for point mutation detection based on electrochemiluminescence. Biosens Bioelectron 20(3):448–453

    CAS  Google Scholar 

  145. Tang YB, Xing D, Zhu DB, Liu JF (2006) An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses. Anal Chim Acta 582:275

    Google Scholar 

  146. Liu J, Xing D, Shen X, Zhu D (2005) Electrochemiluminescence polymerase chain reaction detection of genetically modified organisms. Anal Chim Acta 537(12):119–123

    CAS  Google Scholar 

  147. Zhang L, Schwartz G, O’Donnell M, Harrison RK (2001) Development of a novel helicase assay using electrochemiluminescence. Anal Biochem 293(1):31–37

    CAS  Google Scholar 

  148. Yang ML, Liu CZ, Qian KJ, He PG, Fang YZ (2002) Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst 127(9):1267–1271. doi:10.1039/b205783b

    CAS  Google Scholar 

  149. Calvo-Munoz ML, Dupont-Filliard A, Billon M, Guillerez S, Bidan G, Marquette C, Blum L (2005) Detection of DNA hybridization by ABEI electrochemiluminescence in DNA-chip compatible assembly. Bioelectrochem 66(1–2):139–143. doi:10.1016/j.bioelechem.2004.04.009

    CAS  Google Scholar 

  150. Spehar-Deleze AM, Suomi J, Jiang Q, De Rooij N, Koudelka-Hep M, Kulmala S (2006) Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes. Electrochim Acta 51(25):5438–5444. doi:10.1016/j.electacta.2006.02.017

    CAS  Google Scholar 

  151. Schmittel M, Lin H-W (2007) Quadruple-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis. Angew Chem Intl Ed 46(6):893–896

    CAS  Google Scholar 

  152. Dennany L, Forster RJ, White B, Smyth M, Rusling JF (2004) Direct electrochemiluminescence detection of oxidized DNA in ultrathin films containing [Os(bpy)2(PVP)10]2+. J Am Chem Soc 126(28):8835–8841

    CAS  Google Scholar 

  153. Li Y, Qi H, Peng Y, Yang J, Zhang C (2007) Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem Comm 9(10):2571–2575

    CAS  Google Scholar 

  154. Ye S, Li H, Cao W (2011) Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor. Biosens Bioelectron 26(5):2215–2220. doi:10.1016/j.bios.2010.09.037

    CAS  Google Scholar 

  155. Wang X, Dong P, He P, Fang Y (2010) A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Anal Chim Acta 658(2):128–132. doi:10.1016/j.aca.2009.11.007

    CAS  Google Scholar 

  156. Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G (2010) A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)3 2+-doped silica nanoparticle ECL by ferrocene. Chem Comm 46(41):7751–7753. doi:10.1039/c0cc03225e

    CAS  Google Scholar 

  157. Yao W, Wang L, Wang H, Zhang X, Li L (2009) An aptamer-based electrochemiluminescent biosensor for ATP detection. Biosens Bioelectron 24(11):3269–3274. doi:10.1016/j.bios.2009.04.016

    CAS  Google Scholar 

  158. Liao Y, Yuan R, Chai Y, Mao L, Zhuo Y, Yuan Y, Bai L, Yuan S (2011) Electrochemiluminescence quenching via capture of ferrocene-labeled ligand-bound aptamer molecular beacon for ultrasensitive detection of thrombin. Sens Actuators, B 158(1):393–399. doi:10.1016/j.snb.2011.06.045

    CAS  Google Scholar 

  159. Shan Y, Xu JJ, Chen HY (2011) Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Nanoscale 3(7):2916–2923. doi:10.1039/c1nr10175g

    CAS  Google Scholar 

  160. Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26(5):2645–2650. doi:10.1016/j.bios.2010.11.028

    CAS  Google Scholar 

  161. Xu Y, Dong P, Zhang X, He P, Fang Y (2011) Solid-state electrochemiluminescence protein biosensor with aptamer substitution strategy. Sci China-Chem 54(7):1109–1115. doi:10.1007/s11426-011-4278-y

    CAS  Google Scholar 

  162. Wang X, Dong P, Yun W, Xu Y, He P, Fang Y (2010) Detection of T4 DNA ligase using a solid-state electrochemiluminescence biosensing switch based on ferrocene-labeled molecular beacon. Talanta 80(5):1643–1647. doi:10.1016/j.talanta.2009.09.060

    CAS  Google Scholar 

  163. Liang S, Connel GJ (2009) An electrochemiluminescent aptamer switch for a high-throughput assay of an RNA editing reaction. RNA 15(10):1929–1938. doi:10.1261/rna.1720209

    CAS  Google Scholar 

  164. Gott JM (2000) Emeson RB Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531

    CAS  Google Scholar 

  165. Deaver DR (1995) A new non-isotopic detection system for immunoassays. Nature 377(6551):758–760

    CAS  Google Scholar 

  166. Henchal EA, Teska JD, Ludwig GV, Shoemaker DR, Ezzell JW (2001) Current laboratory methods for biological threat agent identification. Clin Lab Med 21(3):661–678

    CAS  Google Scholar 

  167. Higgins JA, Ibrahim MS, Knauert FK, Ludwig GV, Kijek TM, Ezzell JW, Courtney BC, Henchal EA (1999) Sensitive and rapid identification of biological threat agents. Ann N Y Acad Sci 894:130–148

    CAS  Google Scholar 

  168. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32(1):178–180

    Google Scholar 

  169. Filella X, Friese S, Roth HJ, Nussbaum S, Wehnl B (2000) Technical performance of the Elecsys CA 72-4 test–development and field study. Anticancer Res 20(6D):5229–5232

    Google Scholar 

  170. Stieber P, Molina R, Chan DW, Fritsche HA, Beyrau R, Bonfrer JM, Filella X, Gornet TG, Hoff T, Jager W, van Kamp GJ, Nagel D, Peisker K, Sokoll LJ, Troalen F, Untch M, Domke I (2001) Evaluation of the analytical and clinical performance of the Elecsys CA 15–3 immunoassay. Clin Chem 47(12):2162–2164

    CAS  Google Scholar 

  171. Hubl W, Chan DW, Van Ingen HE, Miyachi H, Molina R, Filella X, Pitzel L, Ruibal A, Rymer JC, Bagnard G, Domke I (1999) Multicenter evaluation of the elecsys CA 125 II assay. Anticancer res 19(4A):2727–2733

    Google Scholar 

  172. van Ingen HE, Chan DW, Hubl W, Miyachi H, Molina R, Pitzel L, Ruibal A, Rymer JC, Domke I (1998) Analytical and clinical evaluation of an electrochemiluminescence immunoassay for the determination of CA 125. Clin Chem 44(12):2530–2536

    Google Scholar 

  173. Baeumner AJ, Humiston MC, Montagna RA, Durst RA (2001) Detection of viable oocysts of cryptosporidium parvum following nucleic acid sequence based amplification. Anal Chem 73(6):1176–1180

    CAS  Google Scholar 

  174. Kuczynska E, Boyer DG, Shelton DR (2003) Comparison of immunofluorescence assay and immunomagnetic electrochemiluminescence in detection of Cryptosporidium parvum oocysts in karst water samples. J Microbiol Methods 53(1):17–26

    Google Scholar 

  175. Weinreb PH, Yang WJ, Violette SM, Couture M, Kimball K, Pepinsky RB, Lobb RR, Josiah S (2002) A cell-free electrochemiluminescence assay for measuring beta1-integrin-ligand interactions. Anal Biochem 15 306(2):305–313

    Google Scholar 

  176. Debad JD, Glezer EN, Wohlstadter J, Sigal GB, Leland JK (2004) In: Bard AJ (ed) Electrogenerated chemiluminescence. Marcel Dekker, New York, p 359

    Google Scholar 

  177. Bruno JG, Yu H (1996) Immunomagnetic-electrochemiluminescent detection of bacillus anthracis spores in soil matrices. App Envir Microbiol 62(9):3474–3476

    CAS  Google Scholar 

  178. Yu H (1997) Enhancing immunoassay possibilities using magnetic carriers in biological fluids. In: Optical diagnostics of biological fluids and advanced techniques in analytical cytology. SPIE, The international society for optical engineering, Bellingham, WA, pp 168–179

    Google Scholar 

  179. Yu H, Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Env Microbiol 62:587

    Google Scholar 

  180. Crawford CG, Wijey C, Fratamico P, Tu SI, Brewster J (2000) Immunomagnetic-electrochemiluminescent detection of E. Coli O157:H7 in ground beef. J Rapid Methods Autom Microbiol 8(4):249–264

    Google Scholar 

  181. Miao W, Bard AJ (2003) Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2′-bipyridyl)ruthenium(II) labels. Anal Chem 75(21):5825–5834

    CAS  Google Scholar 

  182. Lee YM, Johnson PW, Call JL, Arrowood MJ, Furness BW, Pichette SC, Grady KK, Reeh P, Mitchell L, Bergmire-Sweat D, Mackenzie WR (2001) Tsang VC (2001) Development and application of a quantitative, specific assay for Cryptosporidium parvum oocyst detection in high-turbidity environmental water samples. Am J Trop Med Hyg 65(1):1–9

    CAS  Google Scholar 

  183. Call JL, Arrowood M, Xie LT, Hancock K, Tsang VC (2001) Immunoassay for viable Cryptosporidium parvum oocysts in turbid environmental water samples. J Parasitol 87(1):203–210

    CAS  Google Scholar 

  184. Yu H (1996) Enhancing immunoelectrochemiluminescence (IECL) for sensitive bacterial detection. J Immunol Methods 10;192(1–2):63–71

    Google Scholar 

  185. Kijek TM, Rossi CA, Moss D, Parker RW, Henchal EA (2000) Rapid and sensitive immunomagnetic-electrochemiluminescent detection of staphyloccocal enterotoxin B. J Immunol Methods 236(1–2):9–17

    CAS  Google Scholar 

  186. Yu H, Raymonda JW, McMahon TM, Campagnari AA (2000) Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenic- and electro-chemiluminescence. Biosens Bioelectron 14(10):829–840

    CAS  Google Scholar 

  187. Gatto-Menking DL, Yu H, Bruno JG, Goode MT, Miller M, Zulich AW (1995) Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrocheminescence sensor. Biosen Bioelectron 10(67):501–507

    CAS  Google Scholar 

  188. Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14(5):457–464

    CAS  Google Scholar 

  189. Pyati R, Richter MM (2007) ECL-Electrochemical luminescence. Ann Rep Sec “C” (Phy Chem) 103(0):12–78

    Google Scholar 

  190. Zhao J, Chen M, Yu C, Tu Y (2011) Development and application of an electrochemiluminescent flow-injection cell based on CdTe quantum dots modified electrode for high sensitive determination of dopamine. Analyst 136(19):4070–4074. doi:101039/c1an15458c

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Parveen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Parveen, S., Aslam, M.S., Hu, L., Xu, G. (2013). Applications of Electrochemiluminescence. In: Electrogenerated Chemiluminescence. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39555-0_7

Download citation

Publish with us

Policies and ethics