Skip to main content

The Immune System, a Marker and Modulator of the Rate of Aging

  • Chapter
  • First Online:
Immunology of Aging

Abstract

The ageing process shows heterogeneity in the changes suffered by each physiological system in the diverse members of a population of the same chronological age. This phenomenon led to the concept of “biological ageing,” which determines the rate of ageing experienced by each individual and therefore his/her life quality and expectancy. Since the biological age of a subject is difficult to measure, it is necessary to find markers, which will make it possible. The functional capacity of immune cells has been proposed as a marker of health, and using mice with premature senescence, long-lived mice, and human centenarians, it has been confirmed that several immune functions are good markers of biological age and predictors of longevity. Moreover, we have proposed the oxidation-inflammation theory of ageing, in which the immune system is involved in the rate of oxi-inflamm-ageing of the organism and in the biological age. This has been confirmed that applying several lifestyle strategies improves the immune cell functions, decreases oxidative stress, improves the general health, and consequently increases longevity in elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed T, Das SK, Golden JK et al (2009) Caloric restriction enhances T-cell-mediated immune response in adult overweight men and women. J Gerontol A Biol Sci Med Sci 64:1107–1113

    PubMed  Google Scholar 

  • Alonso-Fernandez P, De la Fuente M (2011) Role of the immune system in aging and longevity. Curr Aging Sci 4:78–100

    PubMed  CAS  Google Scholar 

  • Alonso-Fernandez P, Maté I, De la Fuente M (2010) Neutrophils: markers of biological age and predictors of longevity. In: DeFranco JE (ed) Neutrophils: lifespan, functions and role in disease. Nova Science Publisher Inc, New York

    Google Scholar 

  • Anderson RM, Weindruch R (2012) The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol 24:101–106

    PubMed  Google Scholar 

  • Arranz L, Guayerbas N, De la Fuente M (2007) Impairment of several immune functions in anxious women. J Psychosom Res 62:1–8

    PubMed  Google Scholar 

  • Arranz L, De Vicente A, Muñoz M et al (2009) Impairment of immune function in the social excluded homeless population. Neuroimmunomodulation 16:251–260

    PubMed  CAS  Google Scholar 

  • Arranz L, Caamaño J, Lord JM, De la Fuente M (2010a) Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor-kappa B. J Gerontol A Biol Sci Med Sci 65A:941–950

    CAS  Google Scholar 

  • Arranz L, De Castro NM, Baeza I et al (2010b) Differential expression of Toll-like receptor 2 and 4 on peritoneal leukocyte populations from long-lived and non-selected old female mice. Biogerontology 11:475–482

    PubMed  CAS  Google Scholar 

  • Arranz L, De Castro NM, Baeza I et al (2010c) Environmental enrichment improves age-related immune system impairment. Long-term exposure since adulthood increases life span in mice. Rejuvenation Res 13:415–428

    PubMed  Google Scholar 

  • Arranz L, Lord JM, De la Fuente M (2010d) Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice. Age (Dordr) 32:451–466

    CAS  Google Scholar 

  • Arranz L, De Castro NM, Baeza I (2011) Effect of environmental enrichment on the immunoendocrineageing of male and female triple-transgenic 3xTg-AD mice for Alzheimer’s disease. J Alzheimers Dis 25:727–737

    PubMed  CAS  Google Scholar 

  • Arranz L, Naudi A, De la Fuente M, Pamplona R (2013) Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. Age (Dordr) 35(3):621–635

    CAS  Google Scholar 

  • Atzmon G, Cho M, Cawthon RM et al (2010) Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A 107:1710–1717

    PubMed  CAS  Google Scholar 

  • Bae CY, Kang YG, Kim S et al (2008) Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr 47:253–265

    PubMed  CAS  Google Scholar 

  • Bandeen-Roche K, Walston JD, Huang Y et al (2009) Measuring systemic inflammatory regulation in older adults: evidence and utility. Rejuvenation Res 12:403–410

    PubMed  Google Scholar 

  • Barak Y (2006) The immune system and happiness. Autoimmun Rev 5:523–527

    PubMed  CAS  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    PubMed  CAS  Google Scholar 

  • Bauer ME (2008) Chronic stress and immunosenescence. A review. Neuroimmunomodulation 15:244–253

    Google Scholar 

  • Benfante R, Reed R, Brody J (1985) Biological and social predictors of health in an aging cohort. J Chronic Dis 38:175–181

    Google Scholar 

  • Benjamin H (1947) Biologic versus chronologic age. J Gerontol 2:217–227

    PubMed  CAS  Google Scholar 

  • Besedovsky HO, Del Rey A (2007) Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun 21:34–44

    PubMed  CAS  Google Scholar 

  • Besedovsky HO, Del Rey A (2011) Central and peripheral cytokines mediate immune-brain connectivity. Neurochem Res 36:1–6

    PubMed  CAS  Google Scholar 

  • Borkan A, Norris AH (1980) Assessment of biological age using a profile of physical parameters. J Gerontol 35:177–184

    PubMed  CAS  Google Scholar 

  • Bulpitt CJ, Antikainen RL, Markowe HL et al (2009) Mortality according to a prior assessment of biological age. Curr Aging Sci 2:193–199

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Trovato A, Cavallaro M, Mancuso C, Di Rienzo L, Condorelli D, De Lorenzo A, Calabrese EJ (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des 16:877–883

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Iavicoli I, Calabrese V (2012) Hormesis: why it is important to biogerontologists. Biogeron-tology 13:215–235

    Google Scholar 

  • Carnes BA, Staats DO, Sonntag WE (2008) Does senescence give rise to disease? Mech Ageing Dev 129:693–699

    PubMed  Google Scholar 

  • Cavallini G, Donati A, Gori Z et al (2008) Towards an understanding of the anti-aging mechanism of caloric restriction. Curr Aging Sci 1:4–9

    PubMed  Google Scholar 

  • Corona AW, Fenn AM, Godbout JP (2012) Cognitive and behavioral consequences of impaired immunoregulation in aging. J Neuroimmune Pharmacol 7:7–23

    PubMed  Google Scholar 

  • Couillard-Depres S, Iglseder B, Aigner L (2011) Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain. Gerontology 57:559–564

    Google Scholar 

  • De la Fuente M (1985) Changes in the macrophage function with aging. Comp Biochem Physiol 81:935–938

    Google Scholar 

  • De la Fuente M (2004) The immune system as a marker of health and longevity. Antiaging Med 1:31–41

    Google Scholar 

  • De la Fuente M (2010) Murine models of premature ageing for the study of diet-induced immune changes. Improvement of leukocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants. Proc Nutr Soc 69:651–659

    PubMed  Google Scholar 

  • De la Fuente M, Arranz L (2012) The importance of the environment in brain aging: be happy, live longer! In: Thakur MK, Rattan SI (eds) Brain aging, therapeutic interventions. Springer, New York

    Google Scholar 

  • De la Fuente M, De Castro NM (2012) Obesity as a model of premature immunosenescence. Curr Immunol Rev 8:63–75

    Google Scholar 

  • De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026

    PubMed  Google Scholar 

  • De la Fuente M, Hernanz A, Vallejo MC (2005) The immune system in the oxidation stress conditions of aging and hypertension favorable effects of antioxidants and physical exercise. Antioxid Redox Signal 7:1356–1366

    PubMed  Google Scholar 

  • De la Fuente M, Hernandez O, Cruces J et al (2011) Strategies to improve the functions and redox state of the immune system in aged subjects. Curr Pharm Des 17:3966–3993

    Google Scholar 

  • Dewan SK, Zheng SB, Xia SJ (2012) Senescent remodeling of the immune system and its contribution to the predisposition of the elderly to infections. Chin Med J 125:3325–3331

    PubMed  CAS  Google Scholar 

  • Dietert RR, Piepenbrink MS (2008) The managed immune system: protecting the womb to delay the tomb. Hum Exp Toxicol 27:129–134

    PubMed  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Ferguson FG, Wikby A, Maxson P et al (1995) Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci 50:B378–B382

    PubMed  CAS  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    PubMed  CAS  Google Scholar 

  • Frasca D, Blomberg BB (2009) Effects of aging on B cell function. Curr Opin Immunol 21:425–430

    PubMed  CAS  Google Scholar 

  • Fulop T, Larbi A, Kotb R et al (2011) Aging, immunity, and cancer. Discov Med 11:537–550

    PubMed  Google Scholar 

  • Gaman L, Stoian I, Atanasiu V (2011) Can ageing be slowed?: hormetic and redox perspectives. J Med Life 4:346–351

    PubMed  CAS  Google Scholar 

  • Garrido P (2011) Aging and stress: past hypothesis, present approaches and perspectives. Aging Dis 2:80–99

    PubMed  Google Scholar 

  • Gayoso I, Sanchez-Correa B, Campos C et al (2011) Immunosenescence of human natural killer cells. J Innate Immun 3:337–343

    PubMed  CAS  Google Scholar 

  • Gimenez-Llort L, Mate I, Masnassra R et al (2012) Peripheral immune system and neuroimmune communication impairment in a mouse model of Alzheimer’s disease. Ann N Y Acad Sci 1262:74–84

    PubMed  CAS  Google Scholar 

  • Gouin JP, Hantsoo L, Kiecolt. Glaser JK (2008) Immune dysregulation and chronic stress among older adults: a review. Neuroimmunomodulation 15:254–262

    Google Scholar 

  • Goyns MH (2002) Genes, telomeres and mammalian ageing. Mech Ageing Dev 123:791–799

    PubMed  CAS  Google Scholar 

  • Guayerbas N, De la Fuente M (2003) An impairment of phagocytic function is linked to a shorter life span in two strains of prematurely aging mice. Dev Comp Immunol 27:339–350

    PubMed  CAS  Google Scholar 

  • Guayerbas N, Puerto M, Víctor VM et al (2002) Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol 37:249–256

    PubMed  CAS  Google Scholar 

  • Haman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21

    Google Scholar 

  • Harman D (1956) Ageing: a theory based on free radical and radiation chemistry. J Gerontol 2:298–300

    Google Scholar 

  • Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann N Y Acad Sci 1100:1–13

    PubMed  CAS  Google Scholar 

  • Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:414–417

    PubMed  CAS  Google Scholar 

  • Hernanz A, Bayon J, Bisbal E et al (2008) Leukocyte functions are altered in patients with depressive disorder. J Neuroimmunol 197:167–168

    Google Scholar 

  • Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13:451–460

    PubMed  Google Scholar 

  • Kirkwood TBL (2008) Gerontology: healthy old age. Nature 455:739–740

    PubMed  CAS  Google Scholar 

  • Kokkinos P (2012) Physical activity, health benefits, and mortality risk. ISRN Cardiol. doi:10.5402/2012/718789

    PubMed  Google Scholar 

  • Kouda K, Iki M (2010) Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol 29:127–132

    PubMed  Google Scholar 

  • Lang PO, Govin S, Aspinall R (2013) Reversing T cell immunosenescence: why, who and how. Age 35(3):609–620

    PubMed  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445

    PubMed  CAS  Google Scholar 

  • Makrantonaki E, Schonknecht P, Hossini AM (2010) Skin and brain age together: the role of hormones in the ageing process. Exp Gerontol 45:801–813

    PubMed  CAS  Google Scholar 

  • Masoro EJ (2009) Caloric restriction induced life extension of rats and mice: a critique of proposed mechanisms. Biochim Biophys Acta 1790:1040–1048

    PubMed  CAS  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    PubMed  CAS  Google Scholar 

  • Medvedev ZA (1990) An attempt at a rational classification of theories of aging. Biol Rev 65:375–398

    PubMed  CAS  Google Scholar 

  • Messaoudi I, Fischer M, Warner J et al (2008) Optimal window of caloric restriction onset limits its beneficial impact on T-cell senescence in primates. Aging Cell 7:908–919

    PubMed  CAS  Google Scholar 

  • Miquel J (1998) An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol 33:113–126

    PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J et al (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    PubMed  CAS  Google Scholar 

  • Moncek F, Duncko R, Johansson BB et al (2004) Effect of environmental enrichment on stress related systems in rats. J Neuroendocrinol 16:423–431

    PubMed  CAS  Google Scholar 

  • Nakamura E, Miyao K (2007) A method for identifying biomarkers of aging and constructing and index of biological age in humans. J Gerontol A Biol Sci Med Sci 62:1096–1105

    PubMed  Google Scholar 

  • Ogata K, Yokose N, Tamura H et al (1997) Natural killer cells in the late decades of human life. Clin Immunol Immunopathol 84:269–275

    PubMed  CAS  Google Scholar 

  • Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3:91–129

    PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Med Cel Longevity 3:2–12

    Google Scholar 

  • Park J, Cho B, Kwon H (2009) Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr 49:7–12

    PubMed  Google Scholar 

  • Pauwels EK (2011) The protective effect of the Mediterranean diet: focus on cancer and cardiovascular risk. Med Princ Pract 20:103–111

    PubMed  Google Scholar 

  • Pawelec G (2006) Immunity and ageing in man. Exp Gerontol 41:1239–1242

    PubMed  CAS  Google Scholar 

  • Pawelec G, Larbi A, Derhovanesian E (2010) Senescence of the human immune system. J Comp Pathol. doi:10.1016/j.jcpa.2009.09.005

    PubMed  Google Scholar 

  • Puerto M, Guayerbas N, Alvarez P, De la Fuente M (2005) Modulation of neuropeptide Y and norepinephrine on several leucocyte functions in adult, old and very old mice. J Neuroimmunol 165:33–40

    PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY, Koltai E et al (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42

    PubMed  CAS  Google Scholar 

  • Rattan SI (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    PubMed  Google Scholar 

  • Rattan SI, Demirovic D (2009) Hormesis can and does work in humans. Dose Response 8:58–63

    PubMed  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51:327–336

    PubMed  CAS  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    PubMed  CAS  Google Scholar 

  • Ruiz Torres A (1991) Basic results for assessment of human ageing. Arch Gerontol Geriatr 12:261–272

    PubMed  CAS  Google Scholar 

  • Salim S, Chugh G, Asghar M (2012) Inflammation and anxiety. Adv Protein Chem Struct Biol 88:1–25

    PubMed  CAS  Google Scholar 

  • Salminen A, Huuskonen J, Ojala J (2008a) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    PubMed  CAS  Google Scholar 

  • Salminen A, Kauppinen A, Suuronen T et al (2008b) SIRT 1 longevity factor suppresses NF-kappaB-driven immune responses: regulation of aging via NF-kappa B acetylation? Bioessays 30:939–942

    PubMed  CAS  Google Scholar 

  • Schloesser RJ, Lehmann M, Martinowich K et al (2010) Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry 15:1152–1163

    PubMed  CAS  Google Scholar 

  • Shaw AC, Joshi S, Greenwood H et al (2010) Aging of the innate immune system. Curr Opin Immunol 22:507–513

    PubMed  CAS  Google Scholar 

  • Simpson RJ, Lowder TW, Spielmann G et al (2012) Exercise and the aging immune system. Ageing Res Rev 11:404–420

    PubMed  CAS  Google Scholar 

  • Strehler BL (1977) Time, cells and aging, 2nd edn. Academic, New York

    Google Scholar 

  • Vaiserman AM (2010) Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. Dose Response 8:16–21

    PubMed  Google Scholar 

  • Vallejo AN (2011) Is immune aging a cause of disease among the elderly, or is it a passive indicator of general decline of physiologic function? Aging Dis 2:444–448

    PubMed  Google Scholar 

  • Vasto S, Scapagnini G, Bulati M et al (2010) Biomarkers of aging. Front Biosci 2:392–402

    Google Scholar 

  • Viveros MP, Arranz L, Hernanz A et al (2007) A model of premature ageing in mice based on altered stress-related behavioural response and immunosenescence. Neuroimmunomodulation 14:157–162

    PubMed  CAS  Google Scholar 

  • Walford L (1969) The immunologic theory of aging. Williams & Wilkins, Baltimore

    Google Scholar 

  • Walsh NP, Gleeson M, Shepard RJ et al (2011) Positive statement. Part one: immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

  • Wang L, Xie Y, Zhu LJ et al (2010) An association between immunosenescence and CD4(+) CD25(+) regulatory T cells: a systematic review. Biomed Environ Sci 23:327–332

    PubMed  CAS  Google Scholar 

  • Wayne SJ, Rhyne RL, Garry PJ et al (1990) Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol 114:80–88

    Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 2:397–411

    Google Scholar 

  • Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    PubMed  CAS  Google Scholar 

  • Yoon SO, Yun CH, Cheng AS (2002) Dose effect of oxidative stress on signal transduction in aging. Mech Ageing Dev 50:1–8

    Google Scholar 

Download references

Acknowledgements

The author thanks Mr. D. Potter for his help with the English language revision of the manuscript and also expresses her gratitude to Dr. Ortega, Dr. Vallejo, Dr. Medina, Dr. Victor, Dr. Alvarado, Dr. Alvarez, Dr. Alonso, Dr. Arranz, Dr. Baeza, Dr, Gimenez-Llort, Ms De Castro, Ms Vida, Ms Hernandez, Ms Cruces, and Ms Maté for their invaluable help in performing several of the experiments which have allowed us to arrive at the ideas expressed in this chapter. This work was supported by grants of the MINECO (BFU2011-03336), Research Group of UCM (910379ENEROINN), and RETICEF (RD06/0013/0003) (RD12/0043/0018)(ISCIII-FEDER of the European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica De la Fuente PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De la Fuente, M. (2014). The Immune System, a Marker and Modulator of the Rate of Aging. In: Massoud, A., Rezaei, N. (eds) Immunology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39495-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39495-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39494-2

  • Online ISBN: 978-3-642-39495-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics