Skip to main content

Biological Models for Active Vision: Towards a Unified Architecture

  • Conference paper
Computer Vision Systems (ICVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7963))

Included in the following conference series:

Abstract

Building a general-purpose, real-time active vision system completely based on biological models is a great challenge. We apply a number of biologically plausible algorithms which address different aspects of vision, such as edge and keypoint detection, feature extraction, optical flow and disparity, shape detection, object recognition and scene modelling into a complete system. We present some of the experiments from our ongoing work, where our system leverages a combination of algorithms to solve complex tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsotsos, J.K.: Analyzing vision at the complexity level. Behav. Brain Sci. 13, 423–445 (1990)

    Article  Google Scholar 

  2. Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall (1982)

    Google Scholar 

  3. Leyton, M.: A process-grammar for shape. Artif. Intell. 34, 213–247 (1988)

    Article  Google Scholar 

  4. Zhu, S., Mumford, D.: A Stochastic Grammar of Images. Foundations and Trends in Computer Graphics and Vision. Foundations and Trends in Computer Graphics and Vision. Prentice-Hall (2006)

    Google Scholar 

  5. Hanson, A., Riseman, E.: Visions: A computer system for interpreting scenes. In: Computer Vision Systems, pp. 303–333 (1978)

    Google Scholar 

  6. Guhl, T.P., Shanahan, M.P.: Machine perception using a blackboard architecture. In: International Conference on Computer Vision Systems (2007)

    Google Scholar 

  7. Ommer, B., Buhmann, J.: Learning the compositional nature of visual object categories for recognition. IEEE T-PAMI 32, 501–516 (2010)

    Article  Google Scholar 

  8. Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. In: CVPR (2009)

    Google Scholar 

  9. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE T-PAMI 28, 594–611 (2006)

    Article  Google Scholar 

  10. Nagel, H.H.: From image sequences towards conceptual descriptions. Image and Vision Computing 6, 59–74 (1988)

    Article  Google Scholar 

  11. Neumann, B., Möller, R.: On scene interpretation with description logics. Image and Vision Computing 26, 82–101 (2008)

    Article  Google Scholar 

  12. Maillot, N., Thonnat, M.: Ontology based complex object recognition. Image Vision Comput. 26, 102–113 (2008)

    Article  Google Scholar 

  13. Fusier, F., Valentin, V., Bremond, F., Thonnat, M., Borg, M., Thirde, D., Ferryman, J.: Video understanding for complex activity recognition. Machine Vision and Applications (MVA) 18, 167–188 (2007)

    Article  MATH  Google Scholar 

  14. Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., Kuebler, O.: Simulation of neural contour mechanisms: from simple to end-stopped cells. Vision Res. 32, 963–981 (1992)

    Article  Google Scholar 

  15. Hansen, T., Neumann, H.: Neural mechanisms for the robust representation of junctions. Neural Computation 16, 1013–1037 (2004)

    Article  MATH  Google Scholar 

  16. Tsotsos, J.: Neurobiological Models of Visual Attention, pp. 229–238 (2003)

    Google Scholar 

  17. Fidler, S., Leonardis, A.: Towards scalable representations of object categories: Learning a hierarchy of parts. In: CVPR, Minneapolis (2007)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE, 2278–2324 (1998)

    Google Scholar 

  19. Fahlman, S.E., Hinton, G.E.: Connectionist architectures for artificial intelligence. IEEE Computer 20, 100–109 (1987)

    Article  Google Scholar 

  20. Fukushima, K.: Neocognitron for handwritten digit recognition. Neurocomputing 51, 161–180 (2003)

    Article  Google Scholar 

  21. Do Huu, N., Paquier, W., Chatila, R.: Combining structural descriptions and image-based representations for image, object, and scene recognition. In: IJCAI, pp. 1452–1457 (2005)

    Google Scholar 

  22. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Object recognition with cortex-like mechanisms. IEEE T-PAMI 29, 411–426 (2007)

    Article  Google Scholar 

  23. Milford, M., Wyeth, G.: Mapping a suburb with a single camera using a biologically inspired slam system. IEEE Transactions on Robotics 24, 1038–1053 (October)

    Google Scholar 

  24. Siagian, C., Itti, L.: Biologically inspired mobile robot vision localization. IEEE Transactions on Robotics 25, 861–873 (2009)

    Article  Google Scholar 

  25. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. Journal of Neural Engineering 3, 36–54 (2006)

    Article  Google Scholar 

  26. Zibner, S.K.U., Faubel, C., Iossifidis, I., Schöner, G.: Dynamic neural fields as building blocks for a cortex-inspired architecture of robotic scene representation. IEEE Transactions on Autonomous Mental Development (in print 2013)

    Google Scholar 

  27. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A.J., Wiskott, L.: Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE T-PAMI 99, 1 (2012) (in print)

    Google Scholar 

  28. Felleman, D.J., Essen, D.C.V.: Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1–47 (1991)

    Google Scholar 

  29. Rodrigues, J., du Buf, J.: Multi-scale keypoints in V1 and beyond: Object segregation, scale selection, saliency maps and face detection. BioSystems 86, 75–90 (2006)

    Article  Google Scholar 

  30. Frohlinghaus, T., Buhmann, J.M.: Regularizing phase-based stereo. In: ICPR, vol. 1 (1996)

    Google Scholar 

  31. Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)

    Google Scholar 

  32. Farrajota, M., Saleiro, M., Terzic, K., Rodrigues, J., du Buf, J.: Multi-scale cortical keypoints for realtime hand tracking and gesture recognition. In: Proc. 1st Int. Workshop on Cognitive Assistive Systems, Vilamoura, pp. 9–15 (2012)

    Google Scholar 

  33. Boiman, O., Shechtman, E., Irani, M.: In Defense of Nearest-Neighbor Based Image Classification. In: CVPR, Anchorage (2008)

    Google Scholar 

  34. Turi, M., Burr, D.: Spatiotopic perceptual maps in humans: evidence from motion adaptation. Proc. Biol. Sci. 1740, 3091–3097 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Terzić, K. et al. (2013). Biological Models for Active Vision: Towards a Unified Architecture. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39402-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39401-0

  • Online ISBN: 978-3-642-39402-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics