Skip to main content

Cochliobolus heterostrophus: A Dothideomycete Pathogen of Maize

  • Chapter
  • First Online:
Genomics of Soil- and Plant-Associated Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

Abstract

Cochliobolus heterostrophus is a foliar pathogen of maize, causing Southern Corn Leaf Blight. It is a necrotrophic pathogen that causes lesions on leaves and other aboveground organs of the plant. If the host is sensitive to the polyketide T-toxin produced by the pathogen, symptoms are severe, as manifested in major crop loss in the early 1970s. The genomes of several members of the genus have been sequenced and those of additional members of the class Dothideomycetes too. In this chapter, we review how C. heterostrophus has been studied as a model necrotroph, and what has been learned and can be learned in the future from the genome sequences. Among the subjects of detailed molecular genetic studies are signal transduction pathways, stress responses, and secondary metabolite production. Finally, we discuss this primarily aboveground pathogen in relation to soil biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker SE, Kroken S, Inderbitzin P et al. (2006) Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol Plant Microbe Interact 19:139–149

    Article  PubMed  CAS  Google Scholar 

  • Braun EJ, Howard RJ (1994) Adhesion of Cochliobolus heterostrophus conidia and germlings to leaves and artificial surfaces. Exp Mycol 18:211–220

    Article  Google Scholar 

  • Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26

    Article  PubMed  Google Scholar 

  • Catlett NL, Lee B-N, Yoder O, Turgeon B (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11

    Google Scholar 

  • Condon B, Leng Y, Wu D et al. (2013) Comparative genome structure, secondary metabolite and effector coding capacity across Cochliobolus pathogens. PLoS Genet 9(1):e1003233

    Article  PubMed  CAS  Google Scholar 

  • Debuchy R, Turgeon B (2006) Mating-type structure, evolution and function in euascomycetes. In: Kües U, Fischer R (eds) The mycota, vol I. Springer, Berlin, pp 293–323

    Google Scholar 

  • Degani O, Maor R, Hadar R, Sharon A, Horwitz BA (2004) Host physiology and pathogenic variation of Cochliobolus heterostrophus strains with mutations in the G protein alpha subunit, CGA1. Appl Environ Microbiol 70:5005–5009

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Siedow JN, Timothy DH, Levings CS 3rd (1988) A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science 239:293–295

    Article  PubMed  CAS  Google Scholar 

  • Doubly JA, Flor HH, Clagett CO (1960) Relation of antigens of Melampsora lini and Linum usitatissimum to resistance and susceptibility. Science 131:229

    Article  PubMed  CAS  Google Scholar 

  • Drechsler C (1925) Leafspot of maize caused by Ophiobolus heterostrophus, n. sp., the ascigerous stage of a helminthosporium exhibiting bipolar germination. J Agric Res 31:701–726

    Google Scholar 

  • Dufresne M, Osbourn AE (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant Microbe Interact 14:300–307

    Article  PubMed  CAS  Google Scholar 

  • Ganem S, Lu SW, Lee BN, Chou DY, Hadar R, Turgeon BG, Horwitz BA (2004) G-protein beta subunit of Cochliobolus heterostrophus involved in virulence, asexual and sexual reproductive ability, and morphogenesis. Eukaryot Cell 3:1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I et al. (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32

    Article  PubMed  CAS  Google Scholar 

  • Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49:369–390

    Article  PubMed  CAS  Google Scholar 

  • Horwitz BA, Sharon A, Lu SW, Ritter V, Sandrock TM, Yoder OC, Turgeon BG (1999) A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol 26:19–32

    Article  PubMed  CAS  Google Scholar 

  • Huang K, Czymmek KJ, Caplan JL, Sweigard JA, Donofrio NM (2011) HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog 7:e1001335

    Article  PubMed  CAS  Google Scholar 

  • Igbaria A, Lev S, Rose MS, Lee BN, Hadar R, Degani O, Horwitz BA (2008) Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol Plant Microbe Interact 21:769–780

    Article  PubMed  CAS  Google Scholar 

  • Inderbitzin P, Asvarak T, Turgeon B (2010) Six new genes required for production of Ttoxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. Mol Plant Microbe Interact 23:458–472

    Article  PubMed  CAS  Google Scholar 

  • Joosten M, de Wit P (1999) The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopathol 37:335–367

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Willger SD, Park SW et al. (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 5:e1000653

    Article  PubMed  Google Scholar 

  • Kodama M, Rose MS, Yang G, Yun SH, Yoder OC, Turgeon BG (1999) The translocation-associated tox1 locus of Cochliobolus heterostrophus is two genetic elements on two different chromosomes. Genetics 151:585–596

    PubMed  CAS  Google Scholar 

  • Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Schaefer P, Hueckelhoven R et al. (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195

    Article  PubMed  CAS  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  Google Scholar 

  • Leach J, Lang B, Yoder OC (1982) Methods for selection of mutants and in vitro culture of Cochliobolus heterostrophus. J Gen Microbiol 128:1719–1729

    Google Scholar 

  • Lee BN, Kroken S, Chou DY, Robbertse B, Yoder OC, Turgeon BG (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryot Cell 4:545–555

    Article  PubMed  CAS  Google Scholar 

  • Lev S, Horwitz BA (2003) A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell 15:835–844

    Article  PubMed  CAS  Google Scholar 

  • Lev S, Sharon A, Hadar R, Ma H, Horwitz BA (1999) A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc Natl Acad Sci USA 96:13542–13547

    Article  PubMed  CAS  Google Scholar 

  • Lev S, Hadar R, Amedeo P, Baker SE, Yoder OC, Horwitz BA (2005) Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot Cell 4:443–454

    Article  PubMed  CAS  Google Scholar 

  • Levings CS 3rd (1993) Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5:1285–1290

    PubMed  Google Scholar 

  • Lim SM, Hooker AL (1971) Southern corn leaf blight: genetic control of pathogenicity and toxin production in race T and race O of Cochliobolus heterostrophus. Genetics 69:115–117

    PubMed  CAS  Google Scholar 

  • Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R (2010) Tracing the origin of the fungal alpha1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 5:e15199

    Article  PubMed  Google Scholar 

  • Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    Article  PubMed  CAS  Google Scholar 

  • Ohm RA, Feau N, Henrissat B et al. (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi. PLoS Pathog 8:e1003037

    Article  PubMed  CAS  Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853

    Article  PubMed  CAS  Google Scholar 

  • Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353

    Article  PubMed  CAS  Google Scholar 

  • Oide S, Liu J, Yun SH et al. (2010) Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae. Eukaryot Cell 9:1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK et al. (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2:202

    Article  PubMed  Google Scholar 

  • Schirawski J, Mannhaupt G, Munch K et al. (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548

    Article  PubMed  CAS  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586

    Article  PubMed  CAS  Google Scholar 

  • Shalaby S, Horwitz BA, Larkov O (2012) Structure-activity relationships delineate how the maize pathogen Cochliobolus heterostrophus uses aromatic compounds as signals and metabolites. Mol Plant Microbe Interact 25:931–940

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam V, Ronen M, Shalaby S et al. (2010) The fungal pathogen Cochliobolus heterostrophus responds to maize phenolics: novel small molecule signals in a plant-fungal interaction. Cell Microbiol 12:1421–1434

    Article  PubMed  CAS  Google Scholar 

  • Spatafora JW, Owensby CA, Douhan GW, Boehm EW, Schoch CL (2012) Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes). Mycologia 104:758–765

    Article  PubMed  Google Scholar 

  • Sukno SA, Garcia VM, Shaw BD, Thon MR (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol 74:823–832

    Article  PubMed  CAS  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  PubMed  CAS  Google Scholar 

  • Turgeon BG, Baker SE (2007) Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet 57:219–261

    Article  PubMed  CAS  Google Scholar 

  • Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5

    Article  PubMed  CAS  Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1985) Transformation of the fungal maize pathogen Cochliobolus heterostrophus using the Aspergillus nidulans amdS gene. Mol Gen Genet 201:450–453

    Article  CAS  Google Scholar 

  • Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen SK, Yang G, Schafer W, Yoder OC (1993) Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet 238:270–284

    PubMed  CAS  Google Scholar 

  • Turgeon BG, Oide S, Bushley K (2008) Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. Mycol Res 112:200–206

    Article  PubMed  CAS  Google Scholar 

  • Ullstrup A (1972) The impacts of the Southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • Weider C, Stamp P, Christov N, Hüsken A, Foueillassar X, Camp K, Munsch M (2009) Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci 49:77–84

    Article  Google Scholar 

  • Win J, Chaparro-Garcia A, Belhaj K, et al. (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol 77:235–247

    Google Scholar 

  • Wu D, Oide S, Zhang N, Choi MY, Turgeon BG (2012) ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog 8:e1002542

    Article  PubMed  Google Scholar 

  • Yang G (1995) The molecular genetics of T-toxin biosynthesis by Cochliobolus heterostrophus. Ph.D. thesis, Cornell University Thesis.

    Google Scholar 

  • Yang G, Rose MS, Turgeon BG, Yoder OC (1996) A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8:2139–2150

    PubMed  CAS  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of southern corn leaf blight. Adv Plant Pathol 6:93–112

    Google Scholar 

Download references

Acknowledgements

Research in our laboratories, including unpublished data shown in this chapter, was funded in part by USDA, BARD, and ISF. We thank Kent Loeffler (Cornell University) for superb photography and Maayan Duvshani-Eshet (Technion) for her assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Horwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horwitz, B.A., Condon, B.J., Turgeon, B.G. (2013). Cochliobolus heterostrophus: A Dothideomycete Pathogen of Maize. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_9

Download citation

Publish with us

Policies and ethics