Skip to main content

Inference Based on Complete Data

  • Chapter
Prior Processes and Their Applications

Abstract

This chapter contains various applications of prior processes discussed in the previous chapter in solving some inferential problems from a Bayesian point of view. It covers multitude of fields such as, estimation, hypothesis testing, empirical Bayes, density estimation, bioassay, etc. They are grouped according to the inferential task they signify. However, a bulk of the space is devoted to the Bayesian estimation of the distribution function, and its functional, with respect to different priors, and some common features are discussed. This is followed by confidence bands, two-sample problems, a regression problem, and some interesting additional applications are also mentioned. Finally, a decision theoretic approach to testing a statistical hypothesis regarding an unknown distribution function is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammann, L. P. (1984). Bayesian nonparametric inference for quantal response data. Annals of Statistics, 12, 636–645.

    Article  MathSciNet  MATH  Google Scholar 

  • Antoniak, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2, 1152–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972). Statistical inference under order restrictions. New York: Wiley.

    MATH  Google Scholar 

  • Berry, D. A., & Christensen, R. (1979). Empirical Bayes estimation of a binomial parameter via mixtures of Dirichlet process. Annals of Statistics, 7, 558–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, P. K. (1981). Posterior distribution of a Dirichlet process from quantal response data. Annals of Statistics, 9, 803–811.

    Article  MathSciNet  MATH  Google Scholar 

  • Binder, D. A. (1982). Nonparametric Bayesian models for samples from finite populations. Journal of the Royal Statistical Society. Series B. Methodological, 44, 388–393.

    MathSciNet  MATH  Google Scholar 

  • Breth, M. (1978). Bayesian confidence bands for a distribution function. Annals of Statistics, 6, 649–657.

    Article  MathSciNet  MATH  Google Scholar 

  • Breth, M. (1979). Nonparametric Bayesian interval estimation. Biometrika, 66, 641–644.

    Article  Google Scholar 

  • Campbell, G., & Hollander, M. (1978). Rank order estimation with the Dirichlet prior. Annals of Statistics, 6(1), 142–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton, M. K. (1985). A Bayesian nonparametric sequential test for the mean of a population. Annals of Statistics, 13, 1129–1139.

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton, M. K., & Berry, D. (1985). Bayesian nonparametric bandits. Annals of Statistics, 13, 1523–1534.

    Article  MathSciNet  MATH  Google Scholar 

  • Dalal, S. R. (1979a). Dirichlet invariant processes and applications to nonparametric estimation of symmetric distribution functions. Stochastic Processes and Their Applications, 9, 99–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Dalal, S. R. (1979b). Nonparametric and robust Bayes estimation of location. In Optimizing methods in statistics (pp. 141–166). New York: Academic Press.

    Google Scholar 

  • Dalal, S. R., & Phadia, E. G. (1983). Nonparametric Bayes inference for concordance in bivariate distributions. Communications in Statistics. Theory and Methods, 12(8), 947–963.

    Article  MathSciNet  MATH  Google Scholar 

  • Dey, D., Müller, P., & Sinha, D. (Eds.) (1998). Lecture notes in statistics. Practical nonparametric and semiparametric Bayesian statistics. New York: Springer.

    MATH  Google Scholar 

  • Doksum, K. A. (1972). Decision theory for some nonparametric models. In Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, vol. 1: theory of statistics (pp. 331–343).

    Google Scholar 

  • Doss, H. (1985a). Bayesian nonparametric estimation of the median; part I: computation of the estimates. Annals of Statistics, 13, 1432–1444.

    Article  MathSciNet  MATH  Google Scholar 

  • Doss, H. (1985b). Bayesian nonparametric estimation of the median; part II: asymptotic properties of the estimates. Annals of Statistics, 13, 1445–1464.

    Article  MathSciNet  MATH  Google Scholar 

  • Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substitution sampling. Annals of Statistics, 22, 1763–1786.

    Article  MathSciNet  MATH  Google Scholar 

  • Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89, 268–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T. S. (1982). Sequential estimation with Dirichlet process priors. In S. Gupta & J. Berger (Eds.), Statistical decision theory and related topics III (Vol. 1, pp. 385–401).

    Google Scholar 

  • Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In H. Rizvi & J. S. Rustagi (Eds.), Recent advances in statistics (pp. 287–302). New York: Academic Press.

    Google Scholar 

  • Ferguson, T. S., & Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data. Annals of Statistics, 7, 163–186.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghorai, J. K., & Susarla, V. (1982). Empirical Bayes estimation of probability density function with Dirichlet process prior. In W. Grossmann et al. (Eds.), Probability and statistical inference. Dordrecht: Reidel.

    Google Scholar 

  • Ghosh, M. (1985). Nonparametric empirical Bayes estimation of certain functionals. Communications in Statistics. Theory and Methods, 14(9), 2081–2094.

    Article  MATH  Google Scholar 

  • Ghosh, P., Lahari, M., & Tiwari, R. C. (1989). Nonparametric empirical Bayes estimation of the distribution and the mean. Communications in Statistics. Theory and Methods, 18(1), 121–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, G. J. Jr. (1976). Sequential search with random overlook probabilities. Annals of Statistics, 4, 807–816.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, G. J. Jr. (1977). Strongly optimal policies in sequential search with random overlook probabilities. Annals of Statistics, 5, 124–135.

    Article  MathSciNet  MATH  Google Scholar 

  • Hannum, R. C., & Hollander, M. (1983a). Robustness of Ferguson’s Bayes estimator of a distribution function. Annals of Statistics, 11, 632–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Hannum, R. C., & Hollander, M. (1983b). Correction: Robustness of Ferguson’s Bayes estimator of a distribution function. Annals of Statistics, 11, 1267.

    Article  MathSciNet  Google Scholar 

  • Hanson, T. E. (2006). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101, 1548–1565.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, T. E., & Johnson, W. O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, 1020–1033.

    Article  MathSciNet  MATH  Google Scholar 

  • Hjort, N. L. (1985). Bayesian nonparametric bootstrap confidence intervals. (Technical Report No. 240). Stanford, CA: Stanford University, Department of Statistics.

    Google Scholar 

  • Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Annals of Statistics, 18(3), 1259–1294.

    Article  MathSciNet  MATH  Google Scholar 

  • Hollander, M., & Korwar, R. M. (1976). Nonparametric empirical Bayes estimation of the probability that X≤Y. Communications in Statistics. Theory and Methods, 5(14), 1369–1383.

    Article  MathSciNet  Google Scholar 

  • Hollander, M., & Korwar, R. M. (1982). Nonparametric Bayesian estimation of the horizontal distance between two populations. In Nonparametric statistical inference I. New York: North-Holland.

    Google Scholar 

  • Ibrahim, J. L., Chen, M., & Sinha, D. (2001). Bayesian survival analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Kalbfleisch, J. D. (1978). Nonparametric Bayesian analysis of survival data. Journal of the Royal Statistical Society. Series B. Methodological, 40, 214–221.

    MathSciNet  MATH  Google Scholar 

  • Korwar, R. M., & Hollander, M. (1973). Contributions to the theory of Dirichlet processes. Annals of Probability, 1, 705–711.

    Article  MathSciNet  MATH  Google Scholar 

  • Korwar, R. M., & Hollander, M. (1976). Empirical Bayes estimation of a distribution function. Annals of Statistics, 4, 581–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Kraft, C. H., & van Eeden, C. (1964). Bayesian bioassay. Annals of Mathematical Statistics, 35, 886–890.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo, L. (1986a). A note on Bayes empirical Bayes estimation by means of Dirichlet processes. Statistics & Probability Letters, 4, 145–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo, L. (1986b). Computations of mixtures of Dirichlet processes. SIAM Journal on Scientific and Statistical Computing, 7, 60–71.

    Article  Google Scholar 

  • Kuo, L. (1988). Linear Bayes estimators of the potency curve in bioassay. Biometrika, 75, 91–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. Annals of Statistics, 20, 1222–1235.

    Article  MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1994). More aspects of Polya trees for statistical modelling. Annals of Statistics, 22, 1161–1176.

    Article  MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates; I. Density estimates. Annals of Statistics, 12, 351–357.

    Article  MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1986). Bayesian statistical inference for sampling a finite population. Annals of Statistics, 14, 1226–1233.

    Article  MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1987). A large sample study of the Bayesian bootstrap. Annals of Statistics, 15(1), 360–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Lo, A. Y. (1988). A Bayesian bootstrap for a finite population. Annals of Statistics, 16, 1684–1695.

    Article  MathSciNet  MATH  Google Scholar 

  • Neath, A. A., & Bodden, K. (1997). Bayesian nonparametric confidence bounds for a distribution function. Journal of Statistical Computation and Simulation, 59, 147–160.

    Article  MATH  Google Scholar 

  • Phadia, E. G. (1971). Minimax estimation of a cumulative distribution function. (Technical Report 71-1). Columbus, OH: The Ohio State University, Division of Statistics.

    Google Scholar 

  • Phadia, E. G. (1973). Minimax estimation of a cumulative distribution function. Annals of Statistics, 1, 1149–1157.

    Article  MathSciNet  MATH  Google Scholar 

  • Phadia, E. G. (1974). Best invariant confidence bands for a continuous cumulative distribution function. Australian Journal of Statistics, 16(3), 148–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Phadia, E. G. (2007). On bivariate tailfree processes. In Proceedings of the 56th session of the International Statistical Institute, Lisbon, Portugal. Electronic version.

    Google Scholar 

  • Phadia, E. G., & Susarla, V. (1979). An empirical Bayes approach to two-sample problems with censored data. Communications in Statistics. Theory and Methods, 8(13), 1327–1351.

    Article  MathSciNet  Google Scholar 

  • Ramsey, F. L. (1972). A Bayesian approach to bioassay. Biometrics, 28, 841–858.

    Article  Google Scholar 

  • Randles, R. H., & Wolf, D. A. (1979). Introduction to the theory of nonparametric statistics. New York: Wiley.

    MATH  Google Scholar 

  • Sethuraman, J. (1994). A constructive definition of the Dirichlet process prior. Statistica Sinica, 2, 639–650.

    MathSciNet  Google Scholar 

  • Sethuraman, J., & Tiwari, R. C. (1982). Convergence of Dirichlet measures and the interpretation of their parameter. In S. Gupta & J. Berger (Eds.), Statistical decision theory and related topics III (Vol. 1, pp. 305–315).

    Google Scholar 

  • Steck, G. P. (1971). Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distributions. Annals of Mathematical Statistics, 42, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Susarla, V., & Phadia, E. G. (1976). Empirical Bayes testing of a distribution function with Dirichlet process priors. Communications in Statistics. Theory and Methods, 5(5), 455–469.

    Article  MathSciNet  Google Scholar 

  • Tiwari, R. C. (1981). A mathematical study of the Dirichlet process. Ph.D. dissertation, Florida State University, Department of Statistics.

    Google Scholar 

  • Tiwari, R. C., & Lahiri, P. (1989). On robust Bayes and empirical Bayes estimation of means and variances from stratified samples. Communications in Statistics. Theory and Methods, 18(3), 913–926.

    Article  MathSciNet  MATH  Google Scholar 

  • Tiwari, R. C., & Zalkikar, J. N. (1985). Empirical Bayes estimation of functionals of unknown probability measures. Communications in Statistics. Theory and Methods, 14, 2963–2996.

    Article  MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Mallick, B. K. (1997b). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 59, 845–860.

    Article  MathSciNet  MATH  Google Scholar 

  • Walker, S. G., & Mallick, B. K. (1999). Semiparametric accelerated life time models. Biometrics, 55, 477–483.

    Article  MathSciNet  MATH  Google Scholar 

  • West, M. (1990). Bayesian kernel density estimation. (Discussion Paper 90-A02). Duke University, Institute of Statistics and Decision Sciences.

    Google Scholar 

  • West, M. (1992). Modelling with mixtures (with discussion and rejoinder). In J. M. Bernardo et al. (Eds.), Bayesian statistics (Vol. 4). Oxford: Oxford University Press.

    Google Scholar 

  • Wild, C. J., & Kalbfleisch, J. D. (1981). A note on a paper by Ferguson and Phadia. Annals of Statistics, 9, 1061–1065.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamato, H. (1975). A Bayesian estimation of a measure of the difference between two continuous distributions. Reports of the Faculty of Science, Kagoshima University. Mathematics, Physics and Chemistry, 8, 29–38.

    MathSciNet  MATH  Google Scholar 

  • Yamato, H. (1977a). Relations between limiting Bayes estimates and the U-statistics for estimable parameters of degree 2 and 3. Communications in Statistics. Theory and Methods, 6, 55–66.

    Article  MathSciNet  Google Scholar 

  • Yamato, H. (1977b). Relations between limiting Bayes estimates and the U-statistics for estimable parameters. Journal of the Japan Statistical Society, 7, 57–66.

    MathSciNet  Google Scholar 

  • Yamato, H. (1984). Characteristic functions of means of distributions chosen from a Dirichlet process. Annals of Probability, 12, 262–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamato, H. (1986). Bayes estimates of estimable parameters with a Dirichlet invariant process. Communications in Statistics. Theory and Methods, 15(8), 2383–2390.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamato, H. (1987). Nonparametric Bayes estimates of estimable parameters with a Dirichlet invariant process and invariant U-statistics. Communications in Statistics. Theory and Methods, 16(2), 525–543.

    Article  MathSciNet  MATH  Google Scholar 

  • Zacks, S. (1971). The theory of statistical inference. New York: Wiley.

    Google Scholar 

  • Zalkikar, J. N., Tiwari, R. C., & Jammalamadaka, S. R. (1986). Bayes and empirical Bayes estimation of the probability that Z>X+Y. Communications in Statistics. Theory and Methods, 15(10), 3079–3101.

    Article  MathSciNet  MATH  Google Scholar 

  • Zehnwirth, B. (1981). A note on the asymptotic optimality of the empirical Bayes distribution function. Annals of Statistics, 9, 221–224.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phadia, E.G. (2013). Inference Based on Complete Data. In: Prior Processes and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39280-1_2

Download citation

Publish with us

Policies and ethics