Skip to main content

Differential Geometry Applied to Rings and Möbius Nanostructures

  • Chapter
  • First Online:
Physics of Quantum Rings

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy changes due to curvature are most significant for the groundstate eventually leading to qualitative and quantitative changes in physical properties. In particular, the groundstate in-plane symmetry characteristics are broken by curvature effects, however, curvature contributions can be discarded at bending radii above 50 nm. In the second part of the chapter, a more complicated topological structure, the Möbius nanostructure, is analyzed and geometry effects for eigenstate properties are discussed including dependencies on the Möbius nanostructure width, length, thickness, and strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatekenaka, Nature (London) 417, 397 (2002)

    Article  Google Scholar 

  2. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2008)

    Article  Google Scholar 

  3. Y. Ran, Y. Zhang, A. Vishwanath, Nat. Phys. 5, 298 (2009)

    Article  Google Scholar 

  4. Z.L. Guo, Z.R. Gong, H. Dong, C.P. Sun, Phys. Rev. B 80, 195310 (2009)

    Article  ADS  Google Scholar 

  5. J. Gravesen, M. Willatzen, Phys. Rev. A 72, 032108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. E.L. Starostin, G.H.M. van der Heijden, Nat. Mater. 6, 563 (2007)

    Article  Google Scholar 

  7. E.L. Starostin, G.H.M. van der Heijden, Phys. Rev. B 79, 066602 (2009)

    Article  Google Scholar 

  8. D.J. Ballon, H.U. Voss, Phys. Rev. Lett. 101, 247701 (2008)

    Article  ADS  Google Scholar 

  9. M. Yoneya, K. Kuboki, M. Hayashi, Phys. Rev. B 78, 064419 (2008)

    Article  ADS  Google Scholar 

  10. C. Rockstuhl, C. Menzel, T. Paul, F. Lederer, Phys. Rev. B 79, 035321 (2009)

    Article  ADS  Google Scholar 

  11. N. Zhao, H. Dong, S. Yang, C.P. Sun, Phys. Rev. B 79, 125440 (2009)

    Article  ADS  Google Scholar 

  12. Z. Li, L.R. Ram-Mohan, Phys. Rev. B 85, 195438 (2012)

    Article  ADS  Google Scholar 

  13. V.M. Fomin, S. Kiravittaya, O.G. Schmidt, Phys. Rev. B 86, 195421 (2012)

    Article  ADS  Google Scholar 

  14. B. Lassen, M. Willatzen, J. Gravesen, J. Nanoelectron. Optoelectron. 6, 68 (2011)

    Article  Google Scholar 

  15. J. Gravesen, M. Willatzen, Physica B 371, 112–119 (2006)

    Article  ADS  Google Scholar 

  16. J. Gravesen, M. Willatzen, L.C. Lew Yan Voon, J. Math. Phys. 46, 012107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. Course of Theoretical Physics, vol. 7 (Butterworth Heinemann, Oxford, 1999)

    Google Scholar 

  18. M. Sadowski, in Verh. 3. Kongr. Techn. Mechanik, vol. II (1930), pp. 444–451

    Google Scholar 

  19. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)

    Article  ADS  Google Scholar 

  20. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  21. T. Randrup, P. Røgen, Arch. Math. 66, 511–521 (1996)

    Article  MATH  Google Scholar 

  22. G. Schwarz, Pac. J. Math. 143, 195 (1990)

    Article  MATH  Google Scholar 

  23. The MathWorks Inc., MATLAB Version 7.8.0 (The MathWorks Inc., Natick, 2009)

    Google Scholar 

  24. L.C. Lew Yan Voon, M. Willatzen, The kp Method. Springer Series in Solid State Physics (Springer, Berlin, 2009)

    Google Scholar 

  25. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Willatzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lassen, B., Willatzen, M., Gravesen, J. (2014). Differential Geometry Applied to Rings and Möbius Nanostructures. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39197-2_16

Download citation

Publish with us

Policies and ethics