Skip to main content

Strained Quantum Rings

  • Chapter
  • First Online:
Physics of Quantum Rings

Part of the book series: NanoScience and Technology ((NANO))

  • 1583 Accesses

Abstract

Electronic structures of quantum rings strongly depend on the strain profiles caused by the material environment around the ring. We will investigate the strain distributions and electronic structures of quantum rings capped by a support material of which lattice constant is smaller than those of the substrate and active material, and compare the results with a conventional quantum ring. The support material considerably weakens the longitudinal strains and biaxial strain of quantum rings as well as the hole confinement potentials. The unique band alignment of the structure enables the coexistence of type-I and type-II band alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.M. Fomin, J. Nanoelectron. Optoelectron. 6(1), 1–3 (2011)

    Article  Google Scholar 

  2. Q. Gong, R. Nötzel, P. Van Veldhoven, T. Eijkemans, J. Wolter, Appl. Phys. Lett. 84, 275 (2004)

    Article  ADS  Google Scholar 

  3. K. Nishi, H. Saito, S. Sugou, J.S. Lee, Appl. Phys. Lett. 74, 1111 (1999)

    Article  ADS  Google Scholar 

  4. V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, A.Yu. Egorov, A.V. Lunev, B.V. Volovik, I.L. Krestnikov, Yu.G. Musikhin, N.A. Bert, P.S. Kop’ev, Zh.I. Alferov, N.N. Ledentsov, D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999)

    Article  ADS  Google Scholar 

  5. N.T. Yeh, T.E. Nee, J.I. Chyi, T. Hsu, C. Huang, Appl. Phys. Lett. 76, 1567 (2000)

    Article  ADS  Google Scholar 

  6. E.T. Kim, Z. Chen, A. Madhukar, Appl. Phys. Lett. 81, 3473 (2002)

    Article  ADS  Google Scholar 

  7. R. Jia, D. Jiang, H. Liu, Y. Wei, B. Xu, Z. Wang, J. Cryst. Growth 234(2), 354–358 (2002)

    Article  ADS  Google Scholar 

  8. Z.Y. Zhang, B. Xu, P. Jin, X.Q. Meng, Ch.M. Li, X.L. Ye, Z.G. Wang, J. Appl. Phys. 92, 511 (2002)

    Article  ADS  Google Scholar 

  9. P.S. Wong, B.L. Liang, V.G. Dorogan, A.R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y.I. Mazur, G.J. Salamo, S.R.J. Brueck, D.L. Huffaker, Nanotechnology 19, 435710 (2008)

    Article  ADS  Google Scholar 

  10. Q. Gong, R. Nötzel, P. Van Veldhoven, T. Eijkemans, J. Wolter, Appl. Phys. Lett. 85, 1404 (2004)

    Article  ADS  Google Scholar 

  11. K. Park, P. Moon, E. Ahn, S. Hong, E. Yoon, J.W. Yoon, H. Cheong, J.-P. Leburton, Appl. Phys. Lett. 86, 223110 (2005)

    Article  ADS  Google Scholar 

  12. P. Moon, K. Park, E. Yoon, J.P. Leburton, Phys. Status Solidi RRL 3(2–3), 76–78 (2009)

    Article  Google Scholar 

  13. P. Moon, W.J. Choi, K. Park, E. Yoon, J.D. Lee, J. Appl. Phys. 109, 103701 (2011)

    Article  ADS  Google Scholar 

  14. P. Moon, W.J. Choi, J. Lee, Phys. Rev. B 83(16), 165450 (2011)

    Article  ADS  Google Scholar 

  15. J.M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  16. S. Suraprapapich, S. Panyakeow, C. Tu, Appl. Phys. Lett. 90, 183112 (2007)

    Article  ADS  Google Scholar 

  17. F. Ding, L. Wang, S. Kiravittaya, E. Müller, A. Rastelli, O.G. Schmidt, Appl. Phys. Lett. 90, 173104 (2007)

    Article  ADS  Google Scholar 

  18. T. Raz, D. Ritter, G. Bahir, Appl. Phys. Lett. 82, 1706 (2003)

    Article  ADS  Google Scholar 

  19. B.C. Lee, C.P. Lee, Nanotechnology 15, 848 (2004)

    Article  ADS  Google Scholar 

  20. F.H. Li, Z.S. Tao, J. Qin, Y.Q. Wu, J. Zou, F. Lu, Y.L. Fan, X.J. Yang, Z.M. Jiang, Nanotechnology 18, 115708-1 (2011)

    ADS  Google Scholar 

  21. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87, 131902 (2005)

    Article  ADS  Google Scholar 

  22. V. Fomin, V. Gladilin, S. Klimin, J. Devreese, N. Kleemans, P. Koenraad, Phys. Rev. B 76(23), 235320 (2007)

    Article  ADS  Google Scholar 

  23. P. Keating, Phys. Rev. 145(2), 637 (1966)

    Article  ADS  Google Scholar 

  24. R.M. Martin, Phys. Rev. B 1(10), 4005 (1970)

    Article  ADS  Google Scholar 

  25. S. Lee, F. Oyafuso, P. Von Allmen, G. Klimeck, Phys. Rev. B 69(4), 045316 (2004)

    Article  ADS  Google Scholar 

  26. C. Pryor, J. Kim, L. Wang, A. Williamson, A. Zunger, J. Appl. Phys. 83, 2548 (1998)

    Article  ADS  Google Scholar 

  27. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59(8), 5688–5701 (1999)

    Article  ADS  Google Scholar 

  28. M. Burt, J. Phys. Condens. Matter 4, 6651 (1992)

    Article  ADS  Google Scholar 

  29. B.A. Foreman, Phys. Rev. B 56(20), 12748–12751 (1997)

    Article  ADS  Google Scholar 

  30. H.B. Wu, S. Xu, J. Wang, Phys. Rev. B 74(20), 205329 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Moon, E. Yoon, W. Sheng, J.P. Leburton, Phys. Rev. B 79(12), 125325 (2009)

    Article  ADS  Google Scholar 

  32. W. Sheng, J.P. Leburton, Phys. Rev. Lett. 88(16), 167401 (2002)

    Article  ADS  Google Scholar 

  33. W. Sheng, J.P. Leburton, Phys. Rev. B 63(16), 161301 (2001)

    Article  ADS  Google Scholar 

  34. W. Sheng, J.P. Leburton, Appl. Phys. Lett. 80(15), 2755–2757 (2002)

    Article  ADS  Google Scholar 

  35. T.B. Bahder, Phys. Rev. B 41(17), 11992 (1990)

    Article  ADS  Google Scholar 

  36. I. Vurgaftman, J. Meyer, L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  37. I. Saïdi, S. Ben Radhia, K. Boujdaria, J. Appl. Phys. 104(2), 023706 (2008)

    Article  ADS  Google Scholar 

  38. C.Y.P. Chao, S.L. Chuang, Phys. Rev. B 46(7), 4110 (1992)

    Article  ADS  Google Scholar 

  39. J. Barker, R. Warburton, E. O’Reilly, Phys. Rev. B 69(3), 035327 (2004)

    Article  ADS  Google Scholar 

  40. S. Tomić, A.G. Sunderland, I.J. Bush, J. Mater. Chem. 16(20), 1963–1972 (2006)

    Article  Google Scholar 

  41. A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 76(20), 205324 (2007)

    Article  ADS  Google Scholar 

  42. J. Climente, J. Planelles, J. Nanoelectron. Optoelectron. 6(1), 81–86 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Korea Institute for Advanced Study (P.M.) grant funded by the Korea government, and also by Internal Program (2E23910) of Korea Institute of Science and Technology (W.J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilkyung Moon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moon, P., Yoon, E., Choi, W.J., Lee, J., Leburton, JP. (2014). Strained Quantum Rings. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39197-2_13

Download citation

Publish with us

Policies and ethics