Skip to main content

Unsupervised Visual Changepoint Detection Using Maximum Mean Discrepancy

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Included in the following conference series:

Abstract

The need to quantify similarity between two groups of objects is prevalent throughout the signal processing world. Traditionally, measures such as the Kullback-Leibler divergence are employed, but these may require expensive computations of covariance or integrals. Maximum mean discrepancy is a modern distance measure that is computationally simpler – involving the inner product between the difference in means of two groups’ feature distributions – yet statistically powerful, because these distributions are mapped into a high-dimensional, nonlinear feature space using kernels, whereupon the means are estimated via the Parzen estimator. We apply this metric and leverage several powerful data representations from the supervised image classification world, such as bag-of-visual-words and sparse combinations of SIFT descriptors, to locate scene change points in videos with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abd-Almageed, W.: Online, simultaneous shot boundary detection and key frame extraction for sports videos using rank tracing. In: 2008 15th IEEE International Conference on Image Processing, pp. 3200–3203. IEEE (2008)

    Google Scholar 

  2. Arif, O., Vela, P.: Robust density comparison for visual tracking. In: Proceedings of the British Machine Vision Conference, pp. 45.1–45.10 (2009)

    Google Scholar 

  3. Cotsaces, C., Nikolaidis, N., Pitas, I.: Video shot detection and condensed representation a review. IEEE Signal Processing Magazine 23(2), 28–37 (2006)

    Article  Google Scholar 

  4. Csurka, G., Dance, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, European Conf. on Computer Vision, pp. 1–22 (2004)

    Google Scholar 

  5. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Transactions on Signal Processing 53(8), 2961–2974 (2005)

    Article  MathSciNet  Google Scholar 

  6. Gretton, A., Borgwardt, K., Rasch, M.: A kernel method for the two-sample problem. Tech. rep., #157, Max Planck Institute for Biological Cybernetics (2008)

    Google Scholar 

  7. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A Kernel Method for the Two-Sample-Problem. In: Adv. in Neural Information Processing Systems, vol. 19, pp. 513–520. MIT Press (2006)

    Google Scholar 

  8. Harchaoui, Z., Vallet, F., Lung-Yut-Fong, A., Cappe, O.: A regularized kernel-based approach to unsupervised audio segmentation. In: IEEE Int’l Conf. on Acoustics Speech and Signal Processing, pp. 1665–1668. IEEE Computer Society (2009)

    Google Scholar 

  9. Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A Survey on Visual Content-Based Video Indexing and Retrieval. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews 41(6), 797–819 (2011)

    Article  Google Scholar 

  10. Jegelka, S., Gretton, A., Schölkopf, B., Sriperumbudur, B.K., von Luxburg, U.: Generalized clustering via kernel embeddings. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 144–152. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Conf. on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  12. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Omidyeganeh, M., Ghaemmaghami, S., Shirmohammadi, S.: Video Keyframe Analysis Using a Segment-Based Statistical Metric in a Visually Sensitive Parametric Space. IEEE Transactions on Image Processing 20(10), 2730–2737 (2011)

    Article  MathSciNet  Google Scholar 

  14. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition: Foundations And Applications. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  15. Pekalska, E., Paclik, P., Duin, R.P.W.: A Generalized Kernel Approach to Dissimilarity-based Classification. Journal of Machine Learning Research 2(2), 175–211 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Pkalska, E., Duin, R.P.: Dissimilarity representations allow for building good classifiers. Pattern Recognition Letters 23(8), 943–956 (2002)

    Article  Google Scholar 

  17. Ranganathan, A.: PLISS: labeling places using online changepoint detection. Autonomous Robots 32(4), 351–368 (2012)

    Article  Google Scholar 

  18. Sinn, M., Ghodsi, A., Keller, K.: Detecting Change-Points in Time Series by Maximum Mean Discrepancy of Ordinal Pattern Distributions. In: Conf. on Uncertainty in Artificial Intelligence (UAI), pp. 786–794 (2012)

    Google Scholar 

  19. Smeaton, A.F., Over, P., Doherty, A.R.: Video shot boundary detection: Seven years of TRECVid activity. Computer Vision and Image Understanding 114(4), 411–418 (2010)

    Article  Google Scholar 

  20. Snoek, C., Worring, M.: A review on multimodal video indexing. In: Proc. IEEE Intl. Conf. on Multimedia and Expo, vol. 2, pp. 21–24. IEEE (2002)

    Google Scholar 

  21. Wang, J., Yang, J., Yu, K., Lv, F.: Locality-constrained linear coding for image classification. In: Conf. on Computer Vision and Pattern Recognition, pp. 3360–3367 (2010)

    Google Scholar 

  22. Yanagawa, A., Chang, S.: Columbia university’s baseline detectors for 374 lscom semantic visual concepts. Tech. rep., #222-2006-8. Columbia University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diu, M., Gangeh, M., Kamel, M.S. (2013). Unsupervised Visual Changepoint Detection Using Maximum Mean Discrepancy. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics