Skip to main content

Sunscreen-Based Skin Protection Against Solar Insult: Molecular Mechanisms and Opportunities

  • Chapter
  • First Online:
Fundamentals of Cancer Prevention

Abstract

Solar ultraviolet (UV) photons are established environmental carcinogens. Sunscreens are important solar photoprotectants and cancer chemopreventive molecular agents. The importance of efficient skin UVB (290-320 nm) photoprotection that attenuates photomutagenic events originating from direct absorption of UVB photons by DNA bases is firmly established. Cumulative evidence for the involvement of chronic UVA exposure in the causation of solar skin damage including photocarcinogenesis and photoaging now dictates the necessity for additional broadspectrum skin photoprotection that includes the UVA spectral region of sunlight. Based on the emerging consensus that broad spectrum photoprotection is an effective key component of a sun-safe strategy to reduce cumulative lifetime exposure to UV light, much effort has been directed towards the identification, development, and optimization of topical photoprotectants that prevent and attenuate solar skin damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afaq F, Mukhtar H (2006) Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp Dermatol 15(9):678–684

    PubMed  CAS  Google Scholar 

  • Agar NS, Halliday GM et al (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Nat Acad Sci U S A 101(14):4954–4959

    CAS  Google Scholar 

  • Ashby J, Tinwell H et al (2001) Lack of binding to isolated estrogen or androgen receptors, and inactivity in the immature rat uterotrophic assay, of the ultraviolet sunscreen filters Tinosorb M-active and Tinosorb S. Regul Toxicol Pharmacol 34(3):287–291

    PubMed  CAS  Google Scholar 

  • Astner S, Wu A et al (2007) Dietary lutein/zeaxanthin partially reduces photoaging and photocarcinogenesis in chronically UVB-irradiated Skh-1 hairless mice. Skin Pharmacol Physiol 20(6):283–291

    PubMed  CAS  Google Scholar 

  • auf dem Keller U, Huber M (2006) Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing. Mol Cell Biol 26(10):3773–3784

    PubMed  CAS  Google Scholar 

  • Autier P, Boniol M et al (2007) Sunscreen use and increased duration of intentional sun exposure: still a burning issue. Int J Cancer 121(1):1–5

    PubMed  CAS  Google Scholar 

  • Autier P, Boniol M et al (2011) Is sunscreen use for melanoma prevention valid for all sun exposure circumstances? J Clin Oncol 29(14):e425–e426; author reply e427

    PubMed  Google Scholar 

  • Baan R, Straif K et al (2006) Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7(4):295–296

    PubMed  Google Scholar 

  • Baliga MS, Katiyar SK (2006) Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci 5(2):243–253

    PubMed  CAS  Google Scholar 

  • Bech-Thomsen N, Wulf HC (1992) Sunbathers’ application of sunscreen is probably inadequate to obtain the sun protection factor assigned to the preparation. Photodermatol Photoimmunol Photomed 9(6):242–244

    PubMed  Google Scholar 

  • Beck I, Deflandre A et al (1981) Study of the photochemical behaviour of sunscreens – benzylidene camphor and derivatives. Int J Cosmet Sci 3(3):139–152

    PubMed  CAS  Google Scholar 

  • Bens G (2008) Sunscreens. Adv Exp Med Biol 624:137–161

    PubMed  CAS  Google Scholar 

  • Bissonnette R (2008) Update on sunscreens. Skin Therapy Lett 13(6):5–7

    PubMed  CAS  Google Scholar 

  • Bissonnette R, Nigen S et al (2008) Protection afforded by sunscreens containing inorganic sunscreening agents against blue light sensitivity induced by aminolevulinic acid. Dermatol Surg 34(11):1469–1476

    PubMed  CAS  Google Scholar 

  • Boniol M, Dore JF et al (2008) Changing the labeling of sunscreen, will we transform sun avoiders into sunscreen users? J Invest Dermatol 128(2):481; author reply 481–482

    PubMed  CAS  Google Scholar 

  • Bowden GT (2004) Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4(1):23–35

    PubMed  CAS  Google Scholar 

  • Burnett ME, Wang SQ (2011) Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed 27(2):58–67

    PubMed  CAS  Google Scholar 

  • Cantrell A, McGarvey DJ (2001) Photochemical studies of 4-tert-butyl-4′-methoxydibenzoylmethane (BM-DBM). J Photochem Photobiol B 64(2–3):117–122

    PubMed  CAS  Google Scholar 

  • Chatelain E, Gabard B (2001) Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband filter. Photochem Photobiol 74(3):401–406

    PubMed  CAS  Google Scholar 

  • Darvin ME, Haag SF et al (2010) Formation of free radicals in human skin during irradiation with infrared light. J Invest Dermatol 130(2):629–631

    PubMed  CAS  Google Scholar 

  • de Gruijl FR (2000) Photocarcinogenesis: UVA vs UVB. Methods Enzymol 319:359–366

    PubMed  Google Scholar 

  • Dickinson SE, Melton TF et al (2009) Inhibition of activator protein-1 by sulforaphane involves interaction with cysteine in the cFos DNA-binding domain: implications for chemoprevention of UVB-induced skin cancer. Cancer Res 69(17):7103–7110

    PubMed  CAS  Google Scholar 

  • Diehl JW, Chiu MW (2010) Effects of ambient sunlight and photoprotection on vitamin D status. Dermatol Ther 23(1):48–60

    PubMed  Google Scholar 

  • Diffey B (2001) Sunscreen isn’t enough. J Photochem Photobiol B 64(2–3):105–108

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT (2008) Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta Med 74(13):1548–1559

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Jenkins SN et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240(2):243–252

    PubMed  CAS  Google Scholar 

  • Forestier S (2008) Rationale for sunscreen development. J Am Acad Dermatol 58(5 Suppl 2):S133–S138

    PubMed  Google Scholar 

  • Fourtanier A, Moyal D et al (2012) UVA filters in sun-protection products: regulatory and biological aspects. Photochem Photobiol Sci 11(1):81–89

    PubMed  CAS  Google Scholar 

  • Gallagher RP, Rivers JK et al (2000) Broad-spectrum sunscreen use and the development of new nevi in white children: a randomized controlled trial. JAMA 283(22):2955–2960

    PubMed  CAS  Google Scholar 

  • Gasparro FP (2000) Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy. Environ Health Perspect 108(Suppl 1):71–78

    PubMed  CAS  Google Scholar 

  • Gensler HL, Timmermann BN et al (1996) Prevention of photocarcinogenesis by topical administration of pure epigallocatechin gallate isolated from green tea. Nutr Cancer 26(3):325–335

    PubMed  CAS  Google Scholar 

  • Giovannucci E (2005) The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control 16(2):83–95

    PubMed  Google Scholar 

  • Gonzaga ER (2009) Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection. Am J Clin Dermatol 10(Suppl 1):19–24

    PubMed  Google Scholar 

  • Gonzalez S, Gilaberte Y et al (2010) Mechanistic insights in the use of a Polypodium leucotomos extract as an oral and topical photoprotective agent. Photochem Photobiol Sci 9(4):559–563

    PubMed  CAS  Google Scholar 

  • Gordon-Thomson C, Gupta R et al (2012) 1alpha,25 Dihydroxyvitamin D(3) enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci 11(12):1837–1847

    PubMed  CAS  Google Scholar 

  • Green A, Williams G et al (1999) Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 354(9180):723–729

    PubMed  CAS  Google Scholar 

  • Green AC, Williams GM et al (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29(3):257–263

    PubMed  CAS  Google Scholar 

  • Hanson KM, Gratton E et al (2006) Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Radic Biol Med 41(8):1205–1212

    PubMed  CAS  Google Scholar 

  • Hayes JD, McMahon M et al (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13(11):1713–1748

    PubMed  CAS  Google Scholar 

  • Haywood R, Wardman P et al (2003) Sunscreens inadequately protect against ultraviolet-A-induced free radicals in skin: implications for skin aging and melanoma? J Invest Dermatol 121(4):862–868

    PubMed  CAS  Google Scholar 

  • Haywood R, Volkov A et al (2012) Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method. Free Radic Res 46(3):265–275

    PubMed  CAS  Google Scholar 

  • Heinrich U, Neukam K et al (2006) Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J Nutr 136(6):1565–1569

    PubMed  CAS  Google Scholar 

  • Hirota A, Kawachi Y et al (2011) Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice. Exp Dermatol 20(8):664–668

    PubMed  CAS  Google Scholar 

  • Jaeger A, Weiss DG et al (2012) Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296(1–3):27–36

    PubMed  CAS  Google Scholar 

  • Kalra S, Knatko EV et al (2012) Highly potent activation of Nrf2 by topical tricyclic bis(cyano enone): implications for protection against UV radiation during thiopurine therapy. Cancer Prev Res (Phila) 5(7):973–981

    CAS  Google Scholar 

  • Kawachi Y, Xu X et al (2008) Attenuation of UVB-induced sunburn reaction and oxidative DNA damage with no alterations in UVB-induced skin carcinogenesis in Nrf2 gene-deficient mice. J Invest Dermatol 128(7):1773–1779

    PubMed  CAS  Google Scholar 

  • Kensler TW, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31(1):90–99

    PubMed  CAS  Google Scholar 

  • Kolbe L (2012) How much sun protection is needed?: are we on the way to full-spectrum protection? J Invest Dermatol 132(7):1756–1757

    PubMed  CAS  Google Scholar 

  • Krause M, Klit A et al (2012) Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl 35(3):424–436

    PubMed  CAS  Google Scholar 

  • Kullavanijaya P, Lim HW (2005) Photoprotection. J Am Acad Dermatol 52(6):937–958; quiz 959–962

    PubMed  Google Scholar 

  • Kundu JK, Surh YJ (2010) Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm Res 27(6):999–1013

    PubMed  CAS  Google Scholar 

  • Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18:2379–2384

    PubMed  CAS  Google Scholar 

  • Lautenschlager S, Wulf HC et al (2007) Photoprotection. Lancet 370(9586):528–537

    PubMed  CAS  Google Scholar 

  • Lee TK, Rivers JK et al (2005) Site-specific protective effect of broad-spectrum sunscreen on nevus development among white schoolchildren in a randomized trial. J Am Acad Dermatol 52(5):786–792

    PubMed  Google Scholar 

  • Liebel F, Kaur S et al (2012) Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 132(7):1901–1907

    PubMed  CAS  Google Scholar 

  • Mahmoud BH, Hexsel CL et al (2008) Effects of visible light on the skin. Photochem Photobiol 84(2):450–462

    PubMed  CAS  Google Scholar 

  • Maier H, Schauberger G et al (2001) Change of ultraviolet absorbance of sunscreens by exposure to solar-simulated radiation. J Invest Dermatol 117(2):256–262

    PubMed  CAS  Google Scholar 

  • Marrot L, Meunier JR (2008) Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 58(5 Suppl 2):S139–S148

    PubMed  Google Scholar 

  • Matsui MS, Hsia A et al (2009) Non-sunscreen photoprotection: antioxidants add value to a sunscreen. J Investig Dermatol Symp Proc 14(1):56–59

    PubMed  CAS  Google Scholar 

  • Middelkamp-Hup MA, Pathak MA et al (2004) Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J Am Acad Dermatol 51(6):910–918

    PubMed  Google Scholar 

  • Monteiro-Riviere NA, Wiench K et al (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123(1):264–280

    PubMed  CAS  Google Scholar 

  • Moseley H, Cameron H et al (2001) New sunscreens confer improved protection for photosensitive patients in the blue light region. Br J Dermatol 145(5):789–794

    PubMed  CAS  Google Scholar 

  • Moyal D (2004) Prevention of ultraviolet-induced skin pigmentation. Photodermatol Photoimmunol Photomed 20(5):243–247

    PubMed  CAS  Google Scholar 

  • Naylor MF, Boyd A et al (1995) High sun protection factor sunscreens in the suppression of actinic neoplasia. Arch Dermatol 131(2):170–175

    PubMed  CAS  Google Scholar 

  • Newman MD, Stotland M et al (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692

    PubMed  CAS  Google Scholar 

  • Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302(2):71–83

    PubMed  CAS  Google Scholar 

  • Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1–2):31–39

    PubMed  CAS  Google Scholar 

  • Osterwalder U, Herzog B (2010) The long way towards the ideal sunscreen – where we stand and what still needs to be done. Photochem Photobiol Sci 9(4):470–481

    PubMed  CAS  Google Scholar 

  • Reichrath J, Nurnberg B (2009) Cutaneous vitamin D synthesis versus skin cancer development: the Janus faces of solar UV-radiation. Dermatoendocrinol 1(5):253–261

    PubMed  Google Scholar 

  • Saw CL, Huang MT et al (2011) Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog 50(6):479–486

    PubMed  CAS  Google Scholar 

  • Scharffetter-Kochanek K, Wlaschek M et al (1997) UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem 378(11):1247–1257

    PubMed  CAS  Google Scholar 

  • Schroeder P, Calles C et al (2010) Photoprotection beyond ultraviolet radiation – effective sun protection has to include protection against infrared A radiation-induced skin damage. Skin Pharmacol Physiol 23(1):15–17

    PubMed  CAS  Google Scholar 

  • Seite S, Moyal D et al (1998) Mexoryl SX: a broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J Photochem Photobiol B 44(1):69–76

    PubMed  CAS  Google Scholar 

  • Serpone N, Salinaro A et al (2002) An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochem Photobiol Sci 1(12):970–981

    PubMed  CAS  Google Scholar 

  • Sies H, Stahl W (2004) Nutritional protection against skin damage from sunlight. Annu Rev Nutr 24:173–200

    PubMed  CAS  Google Scholar 

  • Singh RP, Agarwal R (2005) Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. Eur J Cancer 41(13):1969–1979

    PubMed  CAS  Google Scholar 

  • Sklar LR, Almutawa F et al (2013) Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci 12(1):54–64

    PubMed  CAS  Google Scholar 

  • Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112

    PubMed  CAS  Google Scholar 

  • Stanton WR, Janda M et al (2004) Primary prevention of skin cancer: a review of sun protection in Australia and internationally. Health Promot Int 19(3):369–378

    PubMed  Google Scholar 

  • Surh YJ, Kundu JK et al (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135(12 Suppl):2993S–3001S

    PubMed  CAS  Google Scholar 

  • Svobodova A, Vostalova J (2010) Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 86(12):999–1030

    PubMed  CAS  Google Scholar 

  • Talalay P, Fahey J et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci U S A 104(44):17500–17505

    PubMed  CAS  Google Scholar 

  • Tarozzi A, Marchesi A et al (2005) Protective effects of cyanidin-3-O-beta-glucopyranoside against UVA-induced oxidative stress in human keratinocytes. Photochem Photobiol 81(3):623–629

    PubMed  CAS  Google Scholar 

  • Tarras-Wahlberg N, Stenhagen G et al (1999) Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J Invest Dermatol 113(4):547–553

    PubMed  CAS  Google Scholar 

  • Thompson SC, Jolley D et al (1993) Reduction of solar keratoses by regular sunscreen use. N Engl J Med 329(16):1147–1151

    PubMed  CAS  Google Scholar 

  • Tian FF, Zhang FF et al (2011) Nrf2-mediated protection against UVA radiation in human skin keratinocytes. Biosci Trends 5(1):23–29

    PubMed  CAS  Google Scholar 

  • Touitou E, Godin B (2008) Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations. Clin Dermatol 26(4):375–379

    PubMed  Google Scholar 

  • Tyrrell RM (1995) Ultraviolet radiation and free radical damage to skin. Biochem Soc Symp 61:47–53

    PubMed  CAS  Google Scholar 

  • Ulrich C, Jurgensen JS et al (2009) Prevention of non-melanoma skin cancer in organ transplant patients by regular use of a sunscreen: a 24 months, prospective, case-control study. Br J Dermatol 161(Suppl 3):78–84

    PubMed  Google Scholar 

  • van der Pols JC, Williams GM et al (2006) Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiol Biomarkers Prev 15(12):2546–2548

    PubMed  Google Scholar 

  • Wetz F, Routaboul C et al (2005) A new long-chain UV absorber derived from 4-tert-butyl-4′-methoxydibenzoylmethane: absorbance stability under solar irradiation. J Cosmet Sci 56(2):135–148

    PubMed  CAS  Google Scholar 

  • Williams S, Tamburic S et al (2009) Eating chocolate can significantly protect the skin from UV light. J Cosmet Dermatol 8(3):169–173

    PubMed  Google Scholar 

  • Wolf R, Wolf D et al (2001) Sunscreens. Clin Dermatol 19(4):452–459

    PubMed  CAS  Google Scholar 

  • Wondrak GT (2007) Let the sun shine in: mechanisms and potential for therapeutics in skin photodamage. Curr Opin Investig Drugs 8(5):390–400

    PubMed  CAS  Google Scholar 

  • Wondrak GT, Roberts MJ et al (2004) 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells. J Biol Chem 279(29):30009–30020

    PubMed  CAS  Google Scholar 

  • Wondrak GT, Jacobson MK et al (2005) Identification of quenchers of photoexcited states as novel agents for skin photoprotection. J Pharmacol Exp Ther 312(2):482–491

    PubMed  CAS  Google Scholar 

  • Wondrak GT, Jacobson MK et al (2006) Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5(2):215–237

    PubMed  CAS  Google Scholar 

  • Wondrak GT, Cabello CM et al (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45(4):385–395

    PubMed  CAS  Google Scholar 

  • Xu J, Sagawa Y et al (2011) Lack of promoting effect of titanium dioxide particles on ultraviolet B-initiated skin carcinogenesis in rats. Food Chem Toxicol 49(6):1298–1302

    PubMed  CAS  Google Scholar 

  • Yang J, Wiley CJ et al (2008) Influence of hydroxypropyl-beta-cyclodextrin on transdermal penetration and photostability of avobenzone. Eur J Pharm Biopharm 69(2):605–612

    PubMed  CAS  Google Scholar 

  • Young AR, Boles J et al (2010) A sunscreen's labeled sun protection factor may overestimate protection at temperate latitudes: a human in vivo study. J Invest Dermatol 130(10):2457–2462

    PubMed  CAS  Google Scholar 

  • Zastrow L, Ferrero L et al (2004) Integrated sun protection factor: a new sun protection factor based on free radicals generated by UV irradiation. Skin Pharmacol Physiol 17(5):219–231

    PubMed  CAS  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:1–21

    Google Scholar 

  • Zhang DD, Lo SC et al (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg T. Wondrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wondrak, G.T. (2014). Sunscreen-Based Skin Protection Against Solar Insult: Molecular Mechanisms and Opportunities. In: Alberts, D., Hess, L. (eds) Fundamentals of Cancer Prevention. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38983-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38983-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38982-5

  • Online ISBN: 978-3-642-38983-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics