Skip to main content

Improved Transition and Reynolds Stress Modeling in RANS Simulations

  • Chapter
Computational Flight Testing

Abstract

Recent developments in Reynolds-stress modeling for applications in aircraft aerodynamics are presented. These include a nonlinear pressure-strain correlation, sensitizing the length-scale equation to pressure gradients and large scale variations, laminar-turbulent transition modeling using linear stability analysis, and a careful calibration of model constants.

The improved Reynolds-stress model is used to simulate different subsonic and transonic airfoil flows as well as an oblique-shock/boundarylayer interaction, employing the unstructured flow solver DLR-TAU. Furthermore the simulation of the flow around an infinite swept wing is presented, in which the prediction and modeling of both Tollmien- Schlichting instabilities and cross-flow instabilities is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Industries, La Cañada (1998)

    Google Scholar 

  2. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aèrospatiale 1, 5–21 (1994)

    Google Scholar 

  3. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  4. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. Journal of Fluid Mechanics 459, 139–166 (2002)

    MATH  Google Scholar 

  5. Kroll, N., Rossow, C.-C., Schwamborn, D.: The MEGAFLOW-Project - Numerical Flow Simulation for Aircraft. In: Progress in Industrial Mathematics at ECMI 2004. Springer, Heidelberg (2005)

    Google Scholar 

  6. Probst, A., Radespiel, R.: Implementation and Extension of a Near-Wall Reynolds-Stress Model for Application to Aerodynamic Flows on Unstructured Meshes. AIAA Paper 2008-770 (2008)

    Google Scholar 

  7. Rumsey, C.L., Pettersson Reif, B.A., Gatski, T.B.: Arbitrary Steady-State Solutions with the K-Epsilon Model. AIAA Journal 44(7), 1586–1592 (2006)

    Article  Google Scholar 

  8. Probst, A., Radespiel, R., Rist, U.: Linear-Stability-Based Transition Modeling for Aerodynamic Flow Simulations with a Near-Wall Reynolds-Stress Model. AIAA Journal 50(2), 416–428 (2012)

    Article  Google Scholar 

  9. Lumley, J.L.: Computational Modeling of Turbulent Flows. Adv. Appl. Mech. 18, 123–176 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gibson, M.M., Launder, B.E.: Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. Journal of Fluid Mechanics 86, 491–511 (1978)

    Article  MATH  Google Scholar 

  11. Jakirlić, S., Hanjalić, K.: A Second-Moment Closure for Non-Equilibrium and Separating High- and Low-Re-Number Flows. In: Proc. 10th Symposium on Turbulent Shear Flows, The Pennsylvania University, USA, August 14-16 (1995)

    Google Scholar 

  12. Daly, B.J., Harlow, F.H.: Transport equations of turbulence. Physics of Fluids 13, 2634–2649 (1970)

    Article  Google Scholar 

  13. Krimmelbein, N., Radespiel, R.: Transition prediction for three-dimensional flows using parallel computation. Computers & Fluids 38(1), 121–136 (2009)

    Article  MATH  Google Scholar 

  14. Arnal, D., Juillen, J. C.: Three-dimensional transition studies at ONERA/CERT. AIAA Paper 87-1335 (1987)

    Google Scholar 

  15. Cook, P.H., McDonald, M.A., Firmin, M.C.P.: Aerofoil RAE 2822 – Pressure Distributions, and Boundary Layer and Wake Measurements. In: Barche, J. (ed.) Experimental Data Base for Computer Program Assessment, AGARD-AR-138, Chapter A6 (1979)

    Google Scholar 

  16. Delery, J., Marvin, J.G.: Shock Wave-Boundary Layer Interactions. NATO, AGARDograph No. 280 (1986)

    Google Scholar 

  17. Dupont, P., Haddad, C., Ardissone, J.P., Debiève, J.F.: Space and time organisation of a shock/turbulent boundary layer interaction. Aerospace Science and Technology 9, 561–572 (2005)

    Article  Google Scholar 

  18. Dupont, P., Piponniau, S., Sidorenko, A., Debiève, J.F.: Investigation by Particle Image Velocimetry Measurements of Oblique Shock Reflection with Separation. AIAA Journal 46(6) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René-Daniel Cécora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cécora, RD., Radespiel, R., Probst, A. (2013). Improved Transition and Reynolds Stress Modeling in RANS Simulations. In: Kroll, N., Radespiel, R., Burg, J., Sørensen, K. (eds) Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38877-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38877-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38876-7

  • Online ISBN: 978-3-642-38877-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics