Skip to main content

An Analysis of the Ping-Pong Protocol Operation in a Noisy Quantum Channel

  • Conference paper
Computer Networks (CN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 370))

Included in the following conference series:

Abstract

A generalized approach to Ping-Pong protocol analysis is introduced. The method is based on investigation of the density operator describing joint systems of communicating parties and an eavesdropper. The method is more versatile than approaches used so far as it permits on incorporation of different noise models in a unified way and make use of well grounded theory of quantum discrimination in estimation of eavesdropper’s information gain. As the proof of the method usefulness an example of its application to the analysis of the protocol execution over depolarizing and dephasing channels is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zawadzki, P.: A numerical simulation of quantum factorization success probability. In: Tkacz, E., Kapczyński, A. (eds.) Internet – Technical Developments and Applications. AISC, vol. 64, pp. 223–231. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Zawadzki, P.: A fine estimate of quantum factorization success probability. Int. J. Quant. Inf. 8(8), 1233–1238 (2010)

    Article  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of International Conference on Computers, Systems and Signal Processing, New York, pp. 175–179 (1984)

    Google Scholar 

  6. Izydorczyk, J., Izydorczyk, M.: Microprocessor scaling: What limits will hold? IEEE Computer 43(8), 20–26 (2010)

    Article  Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Google Scholar 

  10. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stinson, D.R.: Cryptography: Theory and Practice, 2nd edn. Chapman & Hall/CRC (2002)

    Google Scholar 

  12. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  Google Scholar 

  13. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  Google Scholar 

  14. Ostermeyer, M., Walenta, N.: On the implementation of a deterministic secure coding protocol using polarization entangled photons. Opt. Commun. 281(17), 4540–4544 (2008)

    Article  Google Scholar 

  15. Vasiliu, E.V.: Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10, 189–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zawadzki, P.: Security of ping-pong protocol based on pairs of completely entangled qudits. Quantum Inf. Process. 11(6), 1419–1430 (2012)

    Article  MATH  Google Scholar 

  17. Wójcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)

    Article  Google Scholar 

  18. Zhang, Z., Man, Z., Li, Y.: Improving Wójcik’s eavesdropping attack on the ping-pong protocol. Phys. Lett. A 333, 46–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zawadzki, P.: The Ping-Pong protocol with a prior privacy amplification. Int. J. Quant. Inf. 10(3), 1250032 (2012)

    Article  Google Scholar 

  20. Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128(1-2), 19 (1988)

    Article  MathSciNet  Google Scholar 

  21. Herzog, U.: Optimal state discrimination with a fixed rate of inconclusive results: analytical solutions and relation to state discrimination with a fixed error rate. Phys. Rev. A 86, 032314 (2012)

    Google Scholar 

  22. Herzog, U., Bergou, J.A.: Distinguishing mixed quantum states: Minimum-error discrimination versus optimum unambiguous discrimination. Phys. Rev. A 70, 022302 (2004)

    Google Scholar 

  23. Miszczak, J.A.: Singular value decomposition and matrix reorderings in quantum information theory. Int. J. Mod. Phys. C 22(9), 897–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inform. Theor. (4), 1216–1227 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zawadzki, P. (2013). An Analysis of the Ping-Pong Protocol Operation in a Noisy Quantum Channel. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2013. Communications in Computer and Information Science, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38865-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38865-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38864-4

  • Online ISBN: 978-3-642-38865-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics