Skip to main content

Local Cohomology Modules Supported on Monomial Ideals

  • Chapter
  • First Online:
Monomial Ideals, Computations and Applications

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2083))

Abstract

Local cohomology was introduced by A. Grothendieck in the early 1960s and quickly became an indispensable tool in Commutative Algebra. Despite the effort of many authors in the study of these modules, their structure is still quite unknown. C

Josep Àlvarez Montaner was partially supported by SGR2009-1284 and MTM2010-20279- C02-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The presentation given in [135] slightly differs from the one given in [7] at the E 1-page but they coincide at the E 2-page.

  2. 2.

    One may also consider filtrations associated to other weight vectors \((u,v) \in {\mathbb{Z}}^{2n}\) with u + v ≥ 0, but then the corresponding associated graded ring \(\mathit{gr}_{(u,v)}D_{R}\) is not necessarily a polynomial ring.

  3. 3.

    Given the relation \(x_{i}\partial _{i} + 1 = 0\) one may interpret i as the fraction \(\frac{1} {x_{i}}\) in the localization.

  4. 4.

    After completion we can always assume that \(R = k[[x_{1},\ldots,x_{n}]]\) is the formal power series ring.

  5. 5.

    One has to interpret the non-zero entries in the matrix as inclusions of the corresponding components of the Čech complex.

  6. 6.

    We consider this point of view since the same results are true if we consider the defining ideal of any arrangement of linear subspaces.

  7. 7.

    In the language of [157] we would say that the n-hypercube has the same information as the frame of the r-linear strand.

  8. 8.

    In positive characteristic we apply the functor \({}^{{\ast}}\mathrm{Hom}_{R}(\cdot,E_{\mathbf{1}})\).

References

  1. J. Àlvarez Montaner, Characteristic cycles of local cohomology modules of monomial ideals. J. Pure Appl. Algebra 150, 1–25 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Àlvarez Montaner, Characteristic cycles of local cohomology modules of monomial ideals II. J. Pure Appl. Algebra 192, 1–20 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Àlvarez Montaner, Some numerical invariants of local rings. Proc. Am. Math. Soc. 132, 981–986 (2004)

    Article  MATH  Google Scholar 

  4. J. Àlvarez Montaner, Operations with regular holonomic D-modules with support a normal crossing. J. Symb. Comput. 40, 999–1012 (2005)

    Article  MATH  Google Scholar 

  5. J. Àlvarez Montaner, R. García López, S. Zarzuela, Local cohomology, arrangements of subspaces and monomial ideals. Adv. Math. 174, 35–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Àlvarez Montaner, S. Zarzuela, Linearization of local cohomology modules, in Commutative Algebra: Interactions with Algebraic Geometry, ed. by L.L. Avramov, M. Chardin, M. Morales, C. Polini. Contemporary Mathematics, vol. 331 (American Mathematical Society, Providence, 2003), pp. 1–11

    Google Scholar 

  7. J. Àlvarez Montaner, A. Vahidi, Lyubeznik numbers of monomial ideals. Trans. Am. Math. Soc. (2011) [arXiv/1107.5230] (to appear)

    Google Scholar 

  8. D. Bayer, I. Peeva, B. Sturmfels, Monomial resolutions. Math. Res. Lett. 5, 31–46 (1998)

    MathSciNet  MATH  Google Scholar 

  9. D. Bayer, B. Sturmfels, Cellular resolutions of monomial modules. J. Reine Angew. Math. 502, 123–140 (1998)

    MathSciNet  MATH  Google Scholar 

  10. J.E. Björk, Rings of Differential Operators (North Holland Mathematics Library, Amsterdam, 1979)

    MATH  Google Scholar 

  11. M. Blickle, Lyubeznik’s numbers for cohomologically isolated singularities. J. Algebra 308, 118–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Blickle, R. Bondu, Local cohomology multiplicities in terms of étale cohomology. Ann. Inst. Fourier 55, 2239–2256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Boldini, Critical cones of characteristic varieties. Trans. Am. Math. Soc. 365, 143–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Borel, in Algebraic D-Modules. Perspectives in Mathematics (Academic, London, 1987)

    Google Scholar 

  15. M.P. Brodmann, R.Y. Sharp, in Local Cohomology, An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics, vol. 60 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  16. W. Bruns, J. Herzog, Cohen-Macaulay rings, revised edn. (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  17. S.C. Coutinho, in A Primer of Algebraic \(\mathcal{D}\) -Modules. London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  18. J.A. Eagon, V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 130, 265–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Eisenbud, in Commutative Algebra with a View Towards Algebraic Geometry. GTM, vol. 150 (Springer, Berlin, 1995)

    Google Scholar 

  20. D. Eisenbud, G. Fløystad, F.O. Schreyer, Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355, 4397–4426 (2003)

    Article  MATH  Google Scholar 

  21. D. Eisenbud, M. Mustaţă, M. Stillman, Cohomology on toric varieties and local cohomology with monomial supports. J. Symb. Comput. 29, 583–600 (2000)

    Article  MATH  Google Scholar 

  22. S. Eliahou, M. Kervaire, Minimal resolutions of some monomial ideals. J. Algebra 129, 1–25 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Fatabbi, On the resolution of ideals of fat points. J. Algebra 242, 92–108 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.B. Foxby, Bounded complexes of flat modules. J. Pure Appl. Algebra 15, 149–172 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Francisco, H.T. Hà, A. Van Tuyl, Splittings of monomial ideals. Proc. Am. Math. Soc. 137, 3271–3282 (2009)

    Article  MATH  Google Scholar 

  26. O. Gabber, The integrability of the Characteristic Variety. Am. J. Math. 103, 445–468 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Galligo, M. Granger, Ph. Maisonobe, D-modules et faisceaux pervers dont le support singulier est un croisement normal. Ann. Inst. Fourier 35, 1–48 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Galligo, M. Granger, Ph. Maisonobe, D-modules et faisceaux pervers dont le support singulier est un croisement normal. II, in Differential Systems and Singularities (Luminy, 1983). Astérisque 130, 240–259 (1985)

    Google Scholar 

  29. R. Garcia, C. Sabbah, Topological computation of local cohomology multiplicities. Collect. Math. 49, 317–324 (1998)

    MathSciNet  MATH  Google Scholar 

  30. V. Gasharov, I. Peeva, V. Welker, The lcm-lattice in monomial resolutions. Math. Res. Lett. 6, 521–532 (1999)

    MathSciNet  MATH  Google Scholar 

  31. M. Goresky, R. MacPherson, in Stratified Morse Theory. Ergebnisse Series, vol. 14 (Springer, Berlin, 1988)

    Google Scholar 

  32. S. Goto, K. Watanabe, On Graded Rings, II (\({\mathbb{Z}}^{n}\)- graded rings). Tokyo J. Math. 1, 237–261 (1978)

    Google Scholar 

  33. H.G. Gräbe, The canonical module of a Stanley-Reisner ring. J. Algebra 86, 272–281 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Grayson, M. Stillman, Macaulay2, A software system for research in algebraic geometry (2011). Available at: http://www.math.uiuc.edu/Macaulay2

  35. A. Grothendieck, in Local Cohomology. Lecture Notes in Mathematics, vol. 41 (Springer, Berlin, 1967)

    Google Scholar 

  36. A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas Inst. Hautes Études Sci. Publ. Math. 28 (1966)

    Google Scholar 

  37. H.T. Hà, A. Van Tuyl, Splittable ideals and the resolution of monomial ideals. J. Algebra 309, 405–425 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Hellus, A note on the injective dimension of local cohomology modules. Proc. Am. Math. Soc. 136, 2313–2321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Herzog, T. Hibi, Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)

    MathSciNet  MATH  Google Scholar 

  40. J. Herzog, S. Iyengar, Koszul modules. J. Pure Appl. Algebra 201, 154–188 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Huneke, Problems on local cohomology modules, in Free Resolutions in Commutative Algebra and Algebraic Geometry (Sundance, 1990). Research Notes in Mathematics, vol. 2 (Jones and Barthlett Publishers, Boston, 1994), pp. 93–108

    Google Scholar 

  42. C. Huneke, R.Y. Sharp, Bass numbers of local cohomology modules. Trans. Am. Math. Soc. 339, 765–779 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Iyengar, G. Leuschke, A. Leykin, C. Miller, E. Miller, A. Singh, U. Walther, in Twenty-Four Hours of Local Cohomology. Graduate Studies in Mathematics, vol. 87 (American Mathematical Society, Providence, 2007)

    Google Scholar 

  44. M. Jöllenbeck, V. Welker, Minimal resolutions via algebraic discrete Morse theory. Mem. Am. Math. Soc. 197 vi+74 pp. (2009)

    Google Scholar 

  45. F. Kirwan, in An Introduction to Intersection Homology Theory. Pitman Research Notes in Mathematics (Longman Scientific and Technical, Harlow, 1988); copublished in the United States with Wiley, New York

    Google Scholar 

  46. S. Khoroshkin, D-modules over arrangements of hyperplanes. Commun. Algebra 23, 3481–3504 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Khoroshkin, A. Varchenko, Quiver D-modules and homology of local systems over arrangements of hyperplanes. Inter. Math. Res. Papers, 2006

    Google Scholar 

  48. A. Leykin, M. Stillman, H. Tsai, D-modules for Macaulay 2 (2011). Available at: http://people.math.gatech.edu/~aleykin3/Dmodules

  49. G. Lyubeznik, On the local cohomology modules \(H_{\mathfrak{A}}^{i}(R)\) for ideals \(\mathfrak{A}\) generated by monomials in an R-sequence, in Complete Intersections, ed. by S. Greco, R. Strano. Lecture Notes in Mathematics, vol. 1092 (Springer, Berlin, 1984), pp. 214–220

    Google Scholar 

  50. G. Lyubeznik, A new explicit finite free resolution of ideals generated by monomials in an R-sequence. J. Pure Appl. Algebra 51, 193–195 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Lyubeznik, The minimal non-Cohen-Macaulay monomial ideals. J. Pure Appl. Algebra 51, 261–266 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  52. G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra). Invent. Math. 113, 41–55 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Lyubeznik, F-modules: Applications to local cohomology and D-modules in characteristic \(p > 0\). J. Reine Angew. Math. 491, 65–130 (1997)

    MathSciNet  MATH  Google Scholar 

  54. G. Lyubeznik, A partial survey of local cohomology modules, in Local Cohomology Modules and Its Applications (Guanajuato, 1999). Lecture Notes in Pure and Applied Mathematics, vol. 226 (Marcel Dekker, New York, 2002), pp. 121–154

    Google Scholar 

  55. G. Lyubeznik, On some local cohomology modules. Adv. Math. 213, 621–643 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. B. Malgrange, L’involutivité des caractéristiques des systèmes différentiels et microdifférentiels, in Lecture Notes in Mathematics, vol. 710 (Springer, Berlin, 1979), pp. 277–289

    Google Scholar 

  57. Z. Mebkhout, in Le formalisme des six opérations de Grothendieck pour les \(\mathcal{D}_{X}\) -modules cohérents. Travaux en Cours, vol. 35 (Hermann, Paris, 1989)

    Google Scholar 

  58. E. Miller, The Alexander duality functors and local duality with monomial support. J. Algebra 231, 180–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. E.  Miller, B.  Sturmfels, in Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227 (Springer, New York, 2005)

    Google Scholar 

  60. M. Mustaţă, Local Cohomology at Monomial Ideals. J. Symb. Comput. 29, 709–720 (2000)

    Article  MATH  Google Scholar 

  61. M. Mustaţă, Vanishing theorems on toric varieties. Tohoku Math. J. 54, 451–470 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. T. Oaku, Algorithms for b-functions, restrictions and local cohomology groups of D-modules. Adv. Appl. Math. 19, 61–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. T. Oaku, N. Takayama, Algorithms for D-modules—restriction, tensor product, localization, and local cohomology groups. J. Pure Appl. Algebra 156, 267–308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  64. I. Peeva, M. Velasco, Frames and degenerations of monomial resolutions. Trans. Am. Math. Soc. 363, 2029–2046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. F. Pham, in Singularités des systèmes différentiels de Gauss-Manin. Progress in Mathematics, vol. 2 (Birkhäuser, Basel, 1979)

    Google Scholar 

  66. T. Römer, Generalized Alexander duality and applications. Osaka J. Math. 38, 469–485 (2001)

    MathSciNet  MATH  Google Scholar 

  67. T. Römer, On minimal graded free resolutions. Ph.D. Thesis, Essen, 2001

    Google Scholar 

  68. M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudo-differential equations, in Lecture Notes in Mathematics, vol. 287 (Springer, New York, 1973), pp. 265–529

    Google Scholar 

  69. P. Schenzel, On Lyubeznik’s invariants and endomorphisms of local cohomology modules. J. Algebra 344, 229–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. A.M. Simon, Some homological properties of complete modules. Math. Proc. Camb. Philos. Soc. 108, 231–246 (1990)

    Article  MATH  Google Scholar 

  71. G.G. Smith, Irreducible components of characteristic varieties. J. Pure Appl. Algebra 165, 291–306 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. R.P. Stanley, Combinatorics and Commutative Algebra (Birkhäuser, Basel, 1983)

    MATH  Google Scholar 

  73. N. Terai, Local cohomology modules with respect to monomial ideals (1999). Preprint

    Google Scholar 

  74. D. Taylor, Ideals genreated by monomials in an R-sequence. Ph.D. Thesis, University of Chicago, 1961

    Google Scholar 

  75. M. Velasco, Minimal free resolutions that are not supported by a CW-complex. J. Algebra 319, 102–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  76. U. Walther, Algorithmic computation of local cohomology modules and the cohomological dimension of algebraic varieties. J. Pure Appl. Algebra 139, 303–321 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  77. K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree \(\mathbb{N}\)-graded modules. J. Algebra 225, 630–645 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  78. K. Yanagawa, Bass numbers of local cohomology modules with supports in monomial ideals. Math. Proc. Camb. Philos. Soc. 131, 45–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  79. K. Yanagawa, Sheaves on finite posets and modules over normal semigroup rings. J. Pure Appl. Algebra 161, 341–366 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  80. K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support. J. Math. Soc. Jpn. 56, 289–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Many thanks go to Anna M. Bigatti, Philippe Gimenez, and Eduardo Sáenz-de-Cabezón for the invitation to participate in the MONICA conference and the great enviroment they created there. I am also indebted with Oscar Fernández Ramos who agreed to develop the Macaulay 2 routines that not only allowed us to perform many computations but also enlightened part of my research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Àlvarez Montaner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montaner, J.À. (2013). Local Cohomology Modules Supported on Monomial Ideals. In: Bigatti, A., Gimenez, P., Sáenz-de-Cabezón, E. (eds) Monomial Ideals, Computations and Applications. Lecture Notes in Mathematics, vol 2083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38742-5_5

Download citation

Publish with us

Policies and ethics