Skip to main content

Porous Medium

  • Chapter
  • First Online:
FEFLOW
  • 4705 Accesses

Abstract

The processes of flow, mass and heat refer to extensive quantities (such as mass, momentum, energy and entropy), cf. Sect. 2.2.2, which are transported through a spatial domain of interest. This spatial domain is said to behave as a continuum which is occupied by matter for which a continuous distribution can be postulated. The matter may take a number of M aggregate forms or phases α, particularly: solid s, liquid l and gaseous g. It retains their continuity regardless how small volume elements the matter is subdivided in and interior material interfaces or surfaces exist. Any mathematical point we select can be assigned to matter as a physical point of given finite size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It denotes a balance statement in its basic conservation formulation.

  2. 2.

    It denotes a balance statement in which mass conservation is substituted.

  3. 3.

    The equivalence of the area- and volume-averaged fluxes is shown for the interface term A α(ρ ψ) of (3.71), cf. [229]. The volume-averaged flux describes the REV average in the form:

    $$\displaystyle{[\langle \rho \rangle _{\alpha }{\overline{\psi }}^{\alpha }(\boldsymbol{{v}}^{\alpha } -\boldsymbol{ W}) -\boldsymbol{ {j}}^{\alpha }] \cdot \boldsymbol{ {n}}^{\mathrm{TB}} = \frac{1} {\mathit{dV}}\Bigl (\int {_{{\mathit{dV}}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}]dv\Bigr ) \cdot \boldsymbol{ {n}}^{\mathrm{TB}}}$$

    Let us assume that the interface has a thickness D, the volume integral may be written

    $$\displaystyle{ \frac{1} {\mathit{dV}}\int _{-D/2}^{D/2}\Bigl (\int {_{{ \mathit{dS}}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}] \cdot \boldsymbol{ {n}}^{\mathrm{TB}}\mathit{da}\Bigr )dl \approx \frac{D} {\mathit{dV}}\int {_{{\mathit{dS}}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}] \cdot \boldsymbol{ {n}}^{\mathrm{TB}}\mathit{da}}$$

    where mean values are used to replace the line integral. With dS = dVD we find finally

    $$\displaystyle{[\langle \rho \rangle _{\alpha }{\overline{\psi }}^{\alpha }(\boldsymbol{{v}}^{\alpha } -\boldsymbol{ W}) -\boldsymbol{ {j}}^{\alpha }] \cdot \boldsymbol{ {n}}^{\mathrm{TB}} = \frac{1} {\mathit{dS}}\int {_{d{S}^{\mathrm{TB}}}\gamma }^{\alpha }[\rho \psi (\boldsymbol{v} -\boldsymbol{ w}) -\boldsymbol{ j}] \cdot \boldsymbol{ {n}}^{\mathrm{TB}}\mathit{da}}$$

    which corresponds to a α(ρ ψ) in (3.71).

  4. 4.

    They represent constitutive relations originally found from the observation that fluxes of extensive quantities (e.g., mass, heat, momentum) are produced by the nonuniform distribution of their state variables (e.g., concentration gradient, temperature gradient, velocity difference). Frequently, a simple proportionality between fluxes and gradients of state variables is postulated using a parameter taken to be a property of the material (e.g., diffusivity, conductivity, friction).

  5. 5.

    In index notation we derive (dropping phase indices for the sake of simplicity)

    $$\displaystyle{\begin{array}{rcl} \frac{\partial } {\partial x_{j}}\bigl [\varepsilon \tfrac{1} {2}( \frac{\partial v_{i}} {\partial x_{j}} + \frac{\partial v_{j}} {\partial x_{i}})\bigr ] & = & \tfrac{1} {2} \frac{\partial } {\partial x_{j}}\bigl [\frac{\partial (\varepsilon v_{i})} {\partial x_{j}} + \frac{\partial (\varepsilon v_{j})} {\partial x_{i}} - v_{i} \frac{\partial \varepsilon } {\partial x_{j}} - v_{j} \frac{\partial \varepsilon } {\partial x_{i}}\bigr ] \\ & = & \tfrac{1} {2} \frac{{\partial }^{2}(\varepsilon v_{i})} {\partial x_{j}\partial x_{j}} + \tfrac{1} {2} \frac{{\partial }^{2}(\varepsilon v_{j})} {\partial x_{i}\partial x_{j}} -\tfrac{1} {2} \frac{\partial } {\partial x_{j}}\bigl (v_{i} \frac{\partial \varepsilon } {\partial x_{j}}\bigr ) -\tfrac{1} {2} \frac{\partial } {\partial x_{j}}\bigl (v_{j} \frac{\partial \varepsilon } {\partial x_{i}}\bigr ) \\ & = & \tfrac{1} {2} \frac{{\partial }^{2}(\varepsilon v_{i})} {\partial x_{j}\partial x_{j}} + \tfrac{1} {2}\varepsilon \frac{{\partial }^{2}v_{j}} {\partial x_{i}\partial x_{j}} -\tfrac{1} {2}v_{i} \frac{{\partial }^{2}\varepsilon } {\partial x_{j}\partial x_{j}} -\tfrac{1} {2}\bigl ( \frac{\partial v_{i}} {\partial v_{j}} -\frac{\partial v_{j}} {\partial v_{i}}\bigr ) \frac{\partial \varepsilon } {\partial x_{j}} \end{array} }$$
  6. 6.

    In 3D Cartesian coordinates, with v 1, v 2 and v 3 denoting the velocity components in the x 1, x 2 and x 3 directions, respectively, and \(v =\Vert \boldsymbol{ {v}}^{fs}\Vert\), we obtain from (3.182), dropping phase indices for convenience

    $$\displaystyle{\begin{array}{rcl} D_{\mathrm{mech},11} & = & \beta _{T}v + (\beta _{L} -\beta _{T})\frac{v_{1}^{2}} {v} = \frac{1} {v}{\bigl (\beta _{L}v_{1}^{2} +\beta _{T}v_{2}^{2} +\beta _{T}v_{3}^{2}\bigr )} \\ D_{\mathrm{mech},22} & = & \beta _{T}v + (\beta _{L} -\beta _{T})\frac{v_{2}^{2}} {v} = \frac{1} {v}{\bigl (\beta _{T}v_{1}^{2} +\beta _{L}v_{2}^{2} +\beta _{T}v_{3}^{2}\bigr )} \\ D_{\mathrm{mech},33} & = & \beta _{T}v + (\beta _{L} -\beta _{T})\frac{v_{3}^{2}} {v} = \frac{1} {v}{\bigl (\beta _{T}v_{1}^{2} +\beta _{T}v_{2}^{2} +\beta _{L}v_{3}^{2}\bigr )} \\ D_{\mathrm{mech},12} & = & (\beta _{L} -\beta _{T})\frac{v_{1}v_{2}} {v} = D_{\mathrm{mech},21} \\ D_{\mathrm{mech},13} & = & (\beta _{L} -\beta _{T})\frac{v_{1}v_{3}} {v} = D_{\mathrm{mech},31} \\ D_{\mathrm{mech},23} & = & (\beta _{L} -\beta _{T})\frac{v_{2}v_{3}} {v} = D_{\mathrm{mech},32} \end{array} }$$
  7. 7.

    Using calculus manipulations the material derivative of E f with respect to the density ρ f can be alternatively developed for the \(\tfrac{{D{}^{f}\rho }^{f}} {\mathit{Dt}}\) term:

    $$\displaystyle{{\frac{\varepsilon _{f}} {\rho }^{f}}{\Bigl ({p}^{f} - {T}^{f} \frac{\partial {p}^{f}} {\partial {T}^{f}}\Bigr )}\frac{{D{}^{f}\rho }^{f}} {\mathit{Dt}} ={ \frac{\varepsilon _{f}{p}^{f}} {\rho }^{f}} \frac{{D{}^{f}\rho }^{f}} {\mathit{Dt}} +\varepsilon _{f}{T{}^{f}\beta }^{f}\frac{{D}^{f}{p}^{f}} {\mathit{Dt}} }$$

    where the thermal expansion coefficient (3.197), \({\beta }^{f} = -(1{/\rho }^{f})({\partial \rho }^{f}/\partial {T}^{f})\), is inserted.

  8. 8.

    It can be alternatively expressed by introducing the relationships (3.95) and (3.100) of the solid displacement \(\boldsymbol{{u}}^{s}\):

    $$\displaystyle{ \frac{\partial } {\partial t}(\varepsilon {_{s}\rho }^{s}) +\varepsilon { _{s}\rho }^{s}\biggl (\boldsymbol{{m}}^{T} \cdot {\Bigl (\boldsymbol{ L} \cdot \frac{\partial \boldsymbol{{u}}^{s}} {\partial t} \Bigr )}\biggr )} + \nabla (\varepsilon {_{s}\rho }^{s}) \cdot \frac{\partial \boldsymbol{{u}}^{s}} {\partial t} ={\rho }^{s}Q_{s}$$
  9. 9.

    Sometimes, the volumetric flux density is simply represented by the so-called Dupuit-Forchheimer relationship [389], which is a bulk flux in the form \(\boldsymbol{v}_{f} =\varepsilon _{f}\boldsymbol{{v}}^{f}\). This quantity has been given various names by different authors (e.g., seepage or filtration velocity). We shall prefer the term Darcy velocity \(\boldsymbol{q}_{f}\) emphasizing the correct relationship (3.240) for the flux.

  10. 10.

    While a parallel behavior occurs in most of the natural porous media, there could be a porous-medium structure and orientation, where the heat conduction takes place in series. In this case, the heat flux can pass serially though the solid and the fluid, such that the overall thermal conductivity is a harmonic mean \(\boldsymbol{\varLambda }_{0}^{-1} =\varepsilon {s}^{f}{{(\varLambda }^{f}\boldsymbol{\delta })}^{-1} + (1-\varepsilon ){{(\varLambda }^{s}\boldsymbol{\delta })}^{-1}\). The arithmetic mean and harmonic mean represent upper and lower bounds, respectively, for the overall thermal conductivity \(\boldsymbol{\varLambda }_{0}\). Other, more empirical arrangements for \(\boldsymbol{\varLambda }_{0}\) can be made up for certain porous media as discussed in [305].

  11. 11.

    From (3.260) it is \({p}^{l} =\rho _{ 0}^{l}g({h}^{l} - x_{j})\) and with \(\boldsymbol{e} = \nabla x_{j}\) we find \(\nabla {p}^{l} =\rho _{ 0}^{l}g(\nabla {h}^{l} -\boldsymbol{ e})\). Now expanding

    $$\displaystyle\begin{array}{rcl}{ \frac{\boldsymbol{k}} {\mu }^{l}} =\underbrace{\mathop{ \frac{\boldsymbol{k}\rho _{0}^{l}g} {\mu _{0}^{l}} }}\limits _{\boldsymbol{{K}}^{l}}\,\underbrace{\mathop{{ \frac{\mu _{0}^{l}} {\mu }^{l}} }}\limits _{f_{\mu }^{l}}\, \frac{1} {\rho _{0}^{l}g} =\boldsymbol{ {K}}^{l}f_{\mu }^{l} \frac{1} {\rho _{0}^{l}g}& & {}\\ \end{array}$$

    and inserting into (3.258) with (3.261), we obtain

    $$\displaystyle{\boldsymbol{q}_{l} = -k_{r}^{l}\boldsymbol{{K}}^{l}f_{\mu }^{l} \cdot \bigl (\nabla {h}^{l} + \tfrac{{\rho }^{l}-\rho _{ 0}^{l}} {\rho _{0}^{l}} \boldsymbol{e}\bigr )}$$

References

  1. Aris, R.: Vectors, Tensors, and the Basis Equations of Fluid Mechanics. Dover, New York (1962)

    Google Scholar 

  2. Baxter, G., Wallace, C.: Changes in volume upon solution in water of the halogen salts of the alkali metals. J. Am. Chem. Soc. 38(1), 70–105 (1916)

    Article  Google Scholar 

  3. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  4. Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  5. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  6. Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)

    Book  Google Scholar 

  7. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  8. Boussinesq, J.: Théorie analytique de la chaleur, vol. 2. Gauthier-Villars, Paris (1903)

    Google Scholar 

  9. Brown, G.: Henry Darcy and the making of a law. Water Resour. Res. 38(7) (2002). doi:10.1029/2001WR000727

    Google Scholar 

  10. Coleman, B., Noll, W.: Thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  Google Scholar 

  11. De Groot, S., Mazur, P.: Non-equilibrium Thermodynamics. Dover, Mincola (1985)

    Google Scholar 

  12. De Lemos, M.: Turbulence in porous media – modeling and applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  13. De Marsily, G.: Quantitative Hydrogeology – Groundwater Hydrology for Engineers. Academic, Orlando (1986)

    Google Scholar 

  14. Diersch, H.J.: Modellierung und numerische Simulation geohydrodynamischer Ttransportprozesse (modeling and numerical simulation of geohydrodynamic transport processes). Ph.D. thesis, Habilitation, Academy of Sciences, Berlin, Germany (1985)

    Google Scholar 

  15. Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010)

    Article  Google Scholar 

  16. Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 2. Numerical simulation. Transp. Porous Media 86(3), 753–776 (2011)

    Article  Google Scholar 

  17. Eringen, A.: Mechanics of Continua, 2nd edn. Krieger, Huntington (1980)

    Google Scholar 

  18. Evans, D., Raffensperger, J.: On the stream function for variable density groundwater flow. Water Resour. Res. 28(8), 2141–2145 (1992)

    Article  Google Scholar 

  19. Gartling, D., Hickox, C.: Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Methods Fluids 5(11), 995–1013 (1985)

    Article  Google Scholar 

  20. Grant, S.: Extensions of a temperature effects model for capillary pressure saturation relations. Water Resour. Res. 39(1), 1003:1–1003:10 (2003). doi:http://dx.doi.org/10.1029/2000WR000193

  21. Gray, W.: Derivation of vertically averaged equations describing multiphase flow in porous media. Water Resour. Res. 18(6), 1705–1712 (1982). doi:http://dx.doi.org/10.1029/WR018i006p01705

  22. Gray, D., Giorgini, A.: On the validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19(5), 545–551 (1976)

    Article  Google Scholar 

  23. Gray, W., Hassanizadeh, S.: Paradoxes and realities in unsaturated flow theory. Water Resour. Res. 27(8), 1847–1854 (1991). doi:http://dx.doi.org/10.1029/91WR01259

  24. Gray, W., Hassanizadeh, S.: Unsaturated flow theory including interfacial phenomena. Water Resour. Res. 27(8), 1855–1863 (1991). doi:http://dx.doi.org/10.1029/91WR01260

  25. Hassanizadeh, S.: Modeling species transport by concentrated brine in aggregated porous media. Transp. Porous Media 3(3), 299–318 (1988)

    Google Scholar 

  26. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: I. Averaging procedure. Adv. Water Resour. 2(3), 131–144 (1979). doi:http://dx.doi.org/10.1016/0309-1708(79)90025-3

  27. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: III. Constitutive theory for porous media flow. Adv. Water Resour. 3(1), 25–40 (1980). doi:http://dx.doi.org/10.1016/0309-1708(80)90016-0

  28. Hassanizadeh, S., Gray, W.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25(3), 529–539 (1989)

    Article  Google Scholar 

  29. Hassanizadeh, S., Gray, W.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993). doi:http://dx.doi.org/10.1029/93WR01495

    Google Scholar 

  30. Hassanizadeh, S., Leijnse, A.: A non-linear theory of high-concentration-gradient dispersion in porous media. Adv. Water Resour. 18(4), 203–215 (1995). doi:http://dx.doi.org/10.1016/0309-1708(95)00012-8

  31. Hassanizadeh, S., Celia, M., Dahle, H.: Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 1(1), 38–57 (2002)

    Google Scholar 

  32. Holzbecher, E.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)

    Book  Google Scholar 

  33. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)

    Article  Google Scholar 

  34. Kakaç, S., Kilkiş, B., Kulacki, F., Arinç, F. (eds.): Convective Heat and Mass Transfer in Porous Media. NATO ASI Series. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  35. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  36. Kolditz, O., Ratke, R., Diersch, H.J., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable-density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1998)

    Article  Google Scholar 

  37. Lever, D., Jackson, C.: On the equations for the flow of concentrated salt solution through a porous medium. Technical report, AERE-R 11765, Harwell Laboratory, Oxfordshire (1985)

    Google Scholar 

  38. Lewis, R., Schrefler, B.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)

    Google Scholar 

  39. Mercer, J., Pinder, G.: Finite element analysis of hydrothermal systems. In: Oden, J., et al. (eds.) Finite Element Methods in Flow Problems. Proceedings of 1st Symposium, Swansea, pp. 401–414. University of Alabama Press, Huntsville (1974)

    Google Scholar 

  40. Mirnyy, V., Clausnitzer, V., Diersch, H.J., Rosati, R., Schmidt, M., Beruda, H.: Wicking in absorbent swelling porous materials (Chapter 7). In: Masoodi, R., Pillai, K. (eds.) Wicking in Porous Materials, pp. 161–200. CRC/Taylor and Francis, Boca Raton (2013)

    Google Scholar 

  41. Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  42. Nordbotten, J., Celia, M., Dahle, H., Hassanizadeh, S.: Interpretation of macroscale variables in Darcy’s law. Water Resour. Res. 43(W08430), 1–9 (2007). doi:http://dx.doi.org/10.1029/2006WR005018

  43. Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömung infolge von Temperaturdifferenzen (on the thermal conduction of liquids with regard to flows due to temperature differences). Ann. Phys. Chem. 7, 271–292 (1879)

    Google Scholar 

  44. Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)

    Article  Google Scholar 

  45. OECD: The international INTRAVAL project, Phase 1, Summary report. Technical report, OECD, Paris (1994)

    Google Scholar 

  46. Panton, R.: Incompressible Flow. Wiley, New York (1996)

    Google Scholar 

  47. Pinder, G., Gray, W.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken (2008)

    Book  Google Scholar 

  48. Richards, L.: Capillary conduction of liquids through porous media. Physics 1, 318–333 (1931)

    Article  Google Scholar 

  49. Scheidegger, A.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)

    Article  Google Scholar 

  50. Schotting, R., Moser, H., Hassanizadeh, S.: High-concentration-gradient dispersion in porous media: experiments, analysis and approximations. Adv. Water Resour. 22(7), 665–680 (1999). doi:http://dx.doi.org/10.1016/S0309-1708(98)00052-9

  51. Tam, C.: The drag on a cloud of spherical particles in low Reynold number flow. J. Fluid Mech. 38(3), 537–546 (1969)

    Article  Google Scholar 

  52. Truesdell, C., Toupin, R.: Principles of classical mechanics and field theory. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 700–704. Springer, Berlin (1960)

    Google Scholar 

  53. Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor and Francis, Boca Raton (2005)

    Book  Google Scholar 

  54. Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diersch, HJ.G. (2014). Porous Medium. In: FEFLOW. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_3

Download citation

Publish with us

Policies and ethics