Skip to main content

Heat Transport in Porous Media

  • Chapter
  • First Online:
FEFLOW

Abstract

In this chapter we discuss the finite-element computation of heat (thermal energy) transport in porous media. Nonisothermal porous-medium processes can be found in many areas of application to natural and engineered systems, for instance exploitation of geothermal reservoirs as a viable and renewable source of energy, underground energy storage and recovery for heating and cooling purposes, waste disposal of heat-generating materials, chemical reactor engineering, insulation of buildings, material technology and many others. Modern industrial developments have expanded significantly the fields, where numerical simulation is required as a powerful tool to aid the design and operation of equipments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The divergence form (13.1) assumes that the specific heat capacities c and c s are independent of T (cf. Sect. 3.9.1). Contrarily, the convective form (13.2) does not imply such an assumption.

  2. 2.

    Optionally, FEFLOW suppresses the time derivative term ∂ T∂ t for solving steady-state solutions. A specific option exists, named steady flow – transient transport, in which the advective flow vector \(\boldsymbol{q}\) is invariant with time.

  3. 3.

    A boundary with OBC on \(\varGamma _{N_{O}}\) can be separated from the Neumann boundary \(\varGamma _{N_{T}}\) so that for the divergence form

    $$\displaystyle{\int _{\varGamma _{N_{ T}}}wq_{T}^{\dag }d\varGamma =\int _{\varGamma _{ N_{T}}\setminus \varGamma _{N_{O}}}wq_{T}^{\dag }d\varGamma +\int _{\varGamma _{ N_{O}}}w\bigl ((T - T_{0})\rho c\boldsymbol{q} -\boldsymbol{\varLambda }\cdot \nabla T\bigr ) \cdot \boldsymbol{ n}d\varGamma }$$

    and for the convective form

    $$\displaystyle{\int _{\varGamma _{N_{ T}}}wq_{T}d\varGamma =\int _{\varGamma _{N_{ T}}\setminus \varGamma _{N_{O}}}wq_{T}d\varGamma -\int _{\varGamma _{N_{O}}}w(\boldsymbol{\varLambda }\cdot \nabla T) \cdot \boldsymbol{ n}d\varGamma }$$

    The implicit treatment of OBC requires the incorporation of the \(\varGamma _{N_{O}}-\) integrals into the LHS of the resulting matrix system (see below). In contrast, a natural Neumann-type BC with \(-(\boldsymbol{\varLambda }\cdot \nabla T) \cdot \boldsymbol{ n} \approx 0\) on \(\varGamma _{N_{O}}\) is often the preferred alternative formulation for an OBC. Note, however, that for both cases in the divergence form the boundary flux \(\boldsymbol{q} \cdot \boldsymbol{ n}\) must be known a priori. The boundary flux \(\boldsymbol{q} \cdot \boldsymbol{ n}\) can be either explicitly given from a Neumann-type BC \(q_{h} =\boldsymbol{ q} \cdot \boldsymbol{ n}\) for flow or must be computed by a postprocessing budget evaluation of the flow equation on the corresponding outflowing boundary section imposed by Dirichlet-type or Cauchy-type BC of flow.

References

  1. Al-Khoury, R.: Computational Modeling of Shallow Geothermal Systems. CRC/Balkema/ Taylor & Francis, London (2012)

    Google Scholar 

  2. Al-Khoury, R., Bonnier, P.: Efficient finite element formulation for geothermal heating systems. Part II: Transient. Int. J. Numer. Methods Eng. 67(5), 725–745 (2006)

    Article  Google Scholar 

  3. Al-Khoury, R., Bonnier, P., Brinkgreve, R.: Efficient finite element formulation for geothermal heating systems. Part I: Steady state. Int. J. Numer. Methods Eng. 63(7), 988–1013 (2005)

    Article  Google Scholar 

  4. Austin, W., Yavuzturk, C., Spitler, J.: Development of an in-situ system and analysis procedure for measuring ground thermal properties. ASHRAE Trans. 106(1), 356–379 (2000)

    Google Scholar 

  5. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  6. Banks, D.: An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell, Oxford (2008)

    Book  Google Scholar 

  7. Bauer, D., Heidemann, W., Diersch, H.J.: Transient 3D analysis of borehole heat exchanger modeling. Geothermics 40(4), 250–260 (2011)

    Article  Google Scholar 

  8. Bauer, D., Heidemann, W., Müller-Steinhagen, H., Diersch, H.J.: Thermal resistance and capacity models for borehole heat exchangers. Int. J. Energy Res. 35(4), 312–320 (2011)

    Article  Google Scholar 

  9. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  10. Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals. Comput. Geosci. 37(8), 1122–1135 (2011)

    Google Scholar 

  11. Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation. Comput. Geosci. 37(8), 1136–1147 (2011)

    Google Scholar 

  12. Eskilson, P., Claesson, J.: Simulation model for thermally interacting heat extraction boreholes. Numer. Heat Transf. 13(2), 149–165 (1988)

    Google Scholar 

  13. Heidemann, W.: Zur rechnerischen Ermittlung instationärer Temperaturfelder in geschlossener und diskreter Form (on computation of transient temperature fields in closed and discrete form). Ph.D. thesis, University of Stuttgart, Stuttgart, Germany (1995)

    Google Scholar 

  14. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)

    Article  Google Scholar 

  15. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  16. Kolditz, O.: Strömung, Stoff- und Wärmetransport im Kluftgestein (flow, mass and heat transport in fractured rock). Gebr. Borntraeger, Berlin/Stuttgart (1997)

    Google Scholar 

  17. Lamarche, L., Kajl, S., Beauchamp, B.: A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 39(2), 187–200 (2010)

    Article  Google Scholar 

  18. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). Reprinted by J.W. Edwards, Ann Arbor, 1946

    Google Scholar 

  19. Nillert, P.: Beitrag zur Simulation von Brunnen als innere Randbedingungen in horizontalebenen diskreten Grundwasserströmungsmodellen (simulation of wells as inner boundary conditions for horizontal 2D discrete groundwater flow models). Ph.D. thesis, Technical University Dresden, Dresden, Germany (1976)

    Google Scholar 

  20. Schulz, R.: Analytical model calculations for heat exchange in a confined aquifer. J. Geophys. 61, 12–20 (1987)

    Google Scholar 

  21. Signorelli, S., Bassetti, S., Pahud, D., Kohl, T.: Numerical evaluation of thermal response tests. Geothermics 36(2), 141–166 (2007)

    Article  Google Scholar 

  22. Teza, G., Galgaro, A., De Carli, M.: Long-term performance of an irregular shaped borehole heat exchanger system: analysis of real pattern and regular grid approximation. Geothermics 43, 45–56 (2012)

    Article  Google Scholar 

  23. Yavuzturk, C., Spitler, J., Rees, S.: A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans. 105(2), 465–474 (1999)

    Google Scholar 

  24. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diersch, HJ.G. (2014). Heat Transport in Porous Media. In: FEFLOW. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_13

Download citation

Publish with us

Policies and ethics