Skip to main content

Flow in Variably Saturated Porous Media

  • Chapter
  • First Online:
FEFLOW

Abstract

This chapter deals with the finite element solutions for variably saturated porous media (unsaturated-saturated flow). The different formulations of Richards equations with the favorite solution strategies, including the computation of hysterestic effects and time-varying porosity, are discussed. Typical examples and benchmark tests are described to illustrate the usefulness, efficiency and accuracy of the proposed numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Optionally, FEFLOW suppresses the time derivative terms ∂ s∂ t and ∂ h∂ t for solving steady-state solutions.

  2. 2.

    The saturation relation s(ψ) depends on the porous-medium properties, such as parameters α, n and m appearing in the van Genuchten relationship (D.4). In heterogeneous media the parameters can vary in space, i.e., \(\alpha =\alpha (\boldsymbol{x})\), \(n = n(\boldsymbol{x})\) and \(m = m(\boldsymbol{x})\). Then, the chain rule applied to ∇s yields for a van Genuchten relationship

    $$\displaystyle{\nabla s = \frac{\partial s} {\partial \psi } \nabla \psi + \frac{\partial s} {\partial \alpha } \nabla \alpha + \frac{\partial s} {\partial n}\nabla n + \frac{\partial s} {\partial m}\nabla m}$$

    and contrary to (10.14), the correct s−form of the Richards’ equation reads for heterogeneous porous media:

    $$\displaystyle{{\bigl (s\,S_{o}\,{C}^{-1} +\varepsilon \bigr )} \frac{\partial s} {\partial t} -\nabla \cdot {\bigl [\boldsymbol{D}\cdot (\nabla s-\tfrac{\partial s} {\partial \alpha } \nabla \alpha -\tfrac{\partial s} {\partial n}\nabla n- \tfrac{\partial s} {\partial m}\nabla m)+k_{r}\boldsymbol{K}f_{\mu }(1+\chi )\boldsymbol{e}\bigr ]} = Q_{h}+Q_{\mathit{hw}} +Q_{\mathrm{EOB}}}$$

    exemplified for a van Genuchten relationship. Similar expressions result for other empirical s(ψ)−relations, see Appendix D. The terms \(\tfrac{\partial s} {\partial \alpha } \nabla \alpha\), \(\tfrac{\partial s} {\partial n}\nabla n\) and \(\tfrac{\partial s} {\partial m}\nabla m\) additionally appearing in the s−based form of the Richards’ equation need a specific treatment in the numerical solution, e.g., [311]. More discussions are given by LaBolle and Clausnitzer [327].

  3. 3.

    BC’s for the transformed ADE (10.22) can be equivalently found for (10.6) when written by the new F variable:

    $$\displaystyle{\begin{array}{rcll} F & = & \tfrac{1} {\alpha } {e}^{\alpha (h_{D}-z)} & \;\;\mbox{ on}\quad \varGamma _{D} \times t[t_{0},\infty ) \\ - (\boldsymbol{K}f_{\mu } \cdot \nabla F -\boldsymbol{ v}F) \cdot \boldsymbol{ n}& = & q_{F} &\;\;\mbox{ on}\quad \varGamma _{N} \times t[t_{0},\infty ) \\ - [\boldsymbol{K}f_{\mu } \cdot (1+\chi )\boldsymbol{e})] \cdot \boldsymbol{ n}& = & \tfrac{1} {\alpha } \boldsymbol{v} \cdot \boldsymbol{ n} = q_{F}^{\mbox{ $\nabla $}} &\;\;\mbox{ on}\quad \varGamma _{N}^{\mbox{ $\nabla $}}\times t[t_{0},\infty ) \\ - (\boldsymbol{K}f_{\mu } \cdot \nabla F -\boldsymbol{ v}F) \cdot \boldsymbol{ n}& = & -\varPhi _{h}[h_{C} - z -\tfrac{1} {\alpha } \ln (\alpha F)] & \;\;\mbox{ on}\quad \varGamma _{C} \times t[t_{0},\infty ) \\ Q_{\mathit{hw}} & = & -\sum _{w}Q_{w}(t)\delta (\boldsymbol{x} -\boldsymbol{ x}_{w}) & \;\;\mbox{ on}\quad \boldsymbol{x}_{w} \in \varOmega \times t[t_{0},\infty ) \end{array} }$$

    additionally, the seepage face BC for (10.7) as

    $$\displaystyle{F = \tfrac{1} {\alpha } \quad \mbox{ at}\quad Q_{n_{h}} > 0\quad \mbox{ on}\quad \varGamma _{S} \times t[t_{0},\infty )}$$

    and the IC (10.8) in the form

    $$\displaystyle{F(\boldsymbol{x},t_{0}) = \tfrac{1} {\alpha } {e}^{\alpha [h_{0}(\boldsymbol{x})-z]}\quad \mbox{ in}\quad \bar{\varOmega }}$$

    We note that the Cauchy-type BC on Γ C introduces a nonlinear expression in F.

  4. 4.

    It can be shown that the h−based formulation of the Picard method in form of (10.55) deduces from the more general \(h - s-\) based formulation of the Picard method in form of (10.39) if the saturation terms on the RHS of (10.39) are expressed by their derivatives with respect to the hydraulic head, viz.,

    $$\displaystyle{\boldsymbol{s}_{n+1}^{\tau +1} -\boldsymbol{ s}_{n} - (1-\theta )\varDelta t_{n}\dot{\boldsymbol{s}}_{n} =\boldsymbol{ C}_{ n+1}^{\tau } \cdot {\bigl [\boldsymbol{ h}_{ n+1}^{\tau } -\boldsymbol{ h}_{n} - (1-\theta )\varDelta t_{n}\dot{\boldsymbol{h}}_{n}\bigr ]}}$$

    so that the storage matrix \(\boldsymbol{{O}}^{\dag }\) of the h−form results in

    $$\displaystyle{\boldsymbol{{O}}^{\dag }(\boldsymbol{s}_{ n+1}^{\tau }) =\boldsymbol{ O}(\boldsymbol{s}_{ n+1}^{\tau }) +\boldsymbol{ B} \cdot \boldsymbol{ C}_{ n+1}^{\tau }}$$

    where the matrices \(\boldsymbol{O}\), \(\boldsymbol{B}\) and \(\boldsymbol{C}\) are given from the \(h - s-\) form by (10.32) and (10.38), respectively.

  5. 5.

    Empirical target-based time step control: If Newton iterations have converged a new provisional step size Δ t n+1 can be computed in the following way [141]:

    $$\displaystyle{\varDelta t_{n+1} =\varXi \;\varDelta t_{n}}$$

    where Ξ is a time step multiplier, which is determined by the minimum ratio of prescribed target change parameters DXWISH (DSWISH for the saturations \(\boldsymbol{s}_{n+1}\) and DPWISH for the pressure head \(\boldsymbol{\psi }_{n+1}\)) to the Newton correction, viz.,

    $$\displaystyle{\varXi =\min _{i} \frac{\mathrm{DXWISH}} {\vert X_{i,n+1}^{\tau +1} - X_{i,n}\vert }}$$

    Typically used values are DSWISH = 0. 4 and DPWISH = 400 m. Additionally, it can be useful to constrain Ξ by a maximum multiplier ΞΞ max, where Ξ max = 1. 1, , 5. If the Newton scheme does not converge within a maximum number of iterations τ ≤ ITMAX, where ITMAX is typically 12, the current time step has to be rejected. A reduced time step size is then computed by \(\varDelta t_{n}^{\mathrm{red}} =\varDelta t_{n}/\mathrm{TDIV}\) and the solution process is restarted for the current time plane n + 1, but with Δ t n =Δ t n red. The time step divider TDIV is usually 2.

  6. 6.

    Of primary interests are the schemes no.1, no.3 and no.4, providing a full residual control and best mass-conservative properties. Scheme no.1 is very effective for dry porous media, however, it is not well applicable to hysteretic porous-media problems. The Picard method of scheme no.4 is potentially more robust compared to the Newton scheme no.3, however, to the disadvantage of only a linear convergence rate. In solving the mixed \(\psi -s-\) form (or the equivalent \(h - s-\) form) of Richards’ equation, the moisture capacity C is usually evaluated analytically. On the other hand, for the standard h−based forms of the Richards’ equation the chord slope evaluation (see Sect. J.3 of Appendix J) of the moisture capacity is often preferred due to a potentially better discrete mass conservation property. The h−form of schemes no.9 and no.7 are suited for classic seepage simulations (at moderate capillary pressure conditions) involving free surface(s). Scheme no.9 with θ = 1 can be used to approach to steady-state solutions (whenever exist).

  7. 7.

    Two interesting results can be detected from (10.129):

    1. 1.

      We can ask which flux is concerned to force the pressure head zero everywhere? It can be easily shown from (10.129) that such a situation occurs if the infiltration has the amount of the saturated conductivity, i.e., \(v = -K\)

    2. 2.

      We also can ask which flux is concerned to make the pressure head ψ infinity at the soil surface z = 0, i.e., ψ(0) = ? This should occur for a certain rate v which represents the theoretically maximum evaporative flux v max. The pressure head ψ becomes infinity at z = 0 if the argument of the logarithm of (10.129) goes to zero. It implies that

      $$\displaystyle{\frac{v_{\mathrm{max}}} {K} = {e}^{-\alpha L}{\bigl (\frac{v_{\mathrm{max}}} {K} + 1\bigr )}}$$

      and leads to a solution of the theoretically maximum evaporative flux as

      $$\displaystyle{v_{\mathrm{max}} = \frac{K} {{e}^{\alpha L} - 1}.}$$
  8. 8.

    Using the exponential relationship (D.39) in the form of k r = e α ψ we can integrate (10.139) analytically. The BC’s at the top and bottom of the fine layer are the following: At the top, the relative permeability is simply the infiltration rate v divided by the saturated hydraulic conductivity K of the fine layer, i.e., \(k_{r} = v/K =\exp (\alpha \psi _{2})\) so that \(\psi _{2} = \tfrac{1} {\alpha } \ln ( \tfrac{v} {K})\). At the bottom of the fine layer we find the pressure head equal to the value at the top of the coarse layer in a similar relation: \(k_{r}^{\star } = v/{K}^{\star } =\exp {(\alpha }^{\star }\psi _{1})\) so that \(\psi _{1} ={ \tfrac{1} {\alpha }^{\star }}\ln ( \tfrac{v} {{K}^{\star }})\), where K and α are the saturated hydraulic conductivity and sorptive number, respectively, of the coarse layer. Applying these BC’s for ψ 2 and ψ 1 we find the analytical solution of (10.139) for the diversion length as [448]

    $$\displaystyle{L = K\, \frac{\tan \varphi } {v\alpha }{\Bigl [{\Bigl ({ \frac{v} {{K}^{\star }}\Bigr )}}^{\alpha {/\alpha }^{\star }} -{\Bigl ( \frac{v} {K}\Bigr )}\Bigr ]}.}$$
  9. 9.

    In 2D and under steady-state conditions equipotential lines are given by the interval of hydraulic head Δ h. The interval of streamlines (actually, interval of the streamfunction, cf. Sect. 2.1.11) Δ Ψ is determined from

    $$\displaystyle{ \varDelta \varPsi = K \frac{\varDelta h} {\varDelta l} \varDelta q }$$

    where Δ l is the distance between two neighboring equipotential lines and Δ q is the width of the stream tube. A flow net can be constructed if setting Δ l =Δ q so that streamlines and equipotential lines form ‘curvilinear squares’. For such a flow net configuration it is

    $$\displaystyle{\varDelta \varPsi = K\varDelta h.}$$
  10. 10.

    The present example is easily solvable for classic free-surface flow modeling with moving mesh (cf. Sect. 9.5.3), even with only a small number of elements. Contrarily, the classic free-surface modeling strategy with fixed mesh and pseudo-unsaturated conditions (cf. Sect. 9.5.4.4) will not give reasonable results for such type of a vertically dominant drainage because the free-surface BC assigned unmovably to the upper element slice becomes ineffective when all underlying elements fall dry in time.

References

  1. Abarca, E., Carrera, J., Sánchez-Vila, X., Voss, C.: Quasi-horizontal circulation cells in 3D seawater intrusion. J. Hydrol. 339(3–4), 118–129 (2007)

    Google Scholar 

  2. Ackerer, P., Younes, A., Mosé, R.: Modeling variable density flow and solute transport in porous medium: 1. Numerical model and verification. Transp. Porous Media 35(3), 345–373 (1999)

    Google Scholar 

  3. Ackerer, P., Younes, A., Oswald, S., Kinzelbach, W.: On modeling of density driven flow. In: Stauffer, F., et al. (eds.) MODELCARE99 – Calibration and Reliability in Groundwater Modelling: Coping with Uncertainty, Zurich, 1999. IAHS Publication, No. 265, pp. 377–384. IAHS (2000)

    Google Scholar 

  4. ADEME: MACAOH (2001–2006): Modélisation du devenir des composés organo-chlorés aliphatiques dans les aquiféres. Technical report, French Environment and Energy Management Agency (2007). http://www2.ademe.fr/publication

  5. Adler, P., Thovert, J.F.: Fractures and Fracture Networks. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  6. Al-Khoury, R.: Computational Modeling of Shallow Geothermal Systems. CRC/Balkema/ Taylor & Francis, London (2012)

    Google Scholar 

  7. Al-Khoury, R., Bonnier, P.: Efficient finite element formulation for geothermal heating systems. Part II: Transient. Int. J. Numer. Methods Eng. 67(5), 725–745 (2006)

    Google Scholar 

  8. Al-Khoury, R., Bonnier, P., Brinkgreve, R.: Efficient finite element formulation for geothermal heating systems. Part I: Steady state. Int. J. Numer. Methods Eng. 63(7), 988–1013 (2005)

    Google Scholar 

  9. Anderson, M., Woessner, W.: Applied groundwater modeling – simulation of flow and advective transport. Academic, San Diego (1992)

    Google Scholar 

  10. Argyris, J., Vaz, L., Willam, K.: Higher order methods for transient diffusion analysis. Comput. Methods Appl. Mech. Eng. 12(2), 243–278 (1977)

    Google Scholar 

  11. Aricò, C., Sinagra, M., Tucciarelli, T.: The MAST-edge centred lumped scheme for the flow simulation in variably saturated heterogeneous porous media. J. Comput. Phys. 231(4), 1387–1425 (2012)

    Google Scholar 

  12. Aris, R.: Vectors, Tensors, and the Basis Equations of Fluid Mechanics. Dover, New York (1962)

    Google Scholar 

  13. Atkins, P.: Physical Chemistry, 5th edn. Oxford University Press, Oxford (1994)

    Google Scholar 

  14. Austin, W., Yavuzturk, C., Spitler, J.: Development of an in-situ system and analysis procedure for measuring ground thermal properties. ASHRAE Trans. 106(1), 356–379 (2000)

    Google Scholar 

  15. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  16. Babuška, I.: Reliability of computational mechanics. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications: Highlights 1993, pp. 25–44. Wiley, Chichester (1994)

    Google Scholar 

  17. Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Methods Appl. Mech. Eng. 201–204, 91–111 (2012)

    Google Scholar 

  18. Babuška, I., Miller, A.: The post-processing approach in the finite element method – part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20(6), 1085–1109 (1984)

    Google Scholar 

  19. Badon-Ghyben, W.: Nota in verband met de voorgenomen putboring nabij Amsterdam (notes on the probable results of well drilling near Amsterdam). In: Tijdschrift van het Kononklijk Instituut van Ingenieurs, vol. 9, pp. 8–22. The Hague (1888)

    Google Scholar 

  20. Baker, A.: Finite element method (Chapter 28). In: Johnson, R. (ed.) The Handbook of Fluid Dynamics, pp. 28:1–98. CRC/Springer, Boca Raton/Heidelberg (1998)

    Google Scholar 

  21. Bakhvalov, N.: On the convergence of a relaxation method with natural constraints on the elliptic operator. USSR Comput. Math. Math. Phys. 6(5), 101–135 (1966)

    Google Scholar 

  22. Bakker, M., Hemker, K.: Analytical solutions for groundwater whirls in box-shaped, layered anisotropic aquifers. Adv. Water Resour. 27(11), 1075–1086 (2004)

    Google Scholar 

  23. Bank, R.: PLTMG: a software package for solving elliptic partial differential equations – user’s guide 11.0. Technical report, Department of Mathematics, University of California at San Diego, La Jolla (2012). http://ccom.ucsd.edu/~reb/software.html

  24. Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structure for regular local mesh refinement. In: Steplemen, R., et al. (eds.) Scientific Computing, pp. 3–17. IMACS/North Holland, Brussels (1983)

    Google Scholar 

  25. Banks, D.: An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell, Oxford (2008)

    Google Scholar 

  26. Barenblatt, G., Entov, V., Ryzhik, V.: Theory of Fluid Flows Through Natural Rocks. Kluwer Academic, Dordrecht (1990)

    Google Scholar 

  27. Bathe, K.J., Khoshgoftaar, M.: Finite element free surface seepage analysis without mesh iteration. Int. J. Numer. Anal. Methods Geomech. 3(1), 13–22 (1979)

    Google Scholar 

  28. Bauer, D., Heidemann, W., Diersch, H.J.: Transient 3D analysis of borehole heat exchanger modeling. Geothermics 40(4), 250–260 (2011)

    Google Scholar 

  29. Bauer, D., Heidemann, W., Müller-Steinhagen, H., Diersch, H.J.: Thermal resistance and capacity models for borehole heat exchangers. Int. J. Energy Res. 35(4), 312–320 (2011)

    Google Scholar 

  30. Bause, M.: Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity. Adv. Water Resour. 31(2), 370–382 (2008)

    Google Scholar 

  31. Bause, M., Knabner, P.: Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv. Water Resour. 27(6), 561–581 (2004)

    Google Scholar 

  32. Baxter, G., Wallace, C.: Changes in volume upon solution in water of the halogen salts of the alkali metals. J. Am. Chem. Soc. 38(1), 70–105 (1916)

    Google Scholar 

  33. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  34. Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  35. Bear, J.: Modeling flow and contaminant transport in fractured rocks. In: Bear, J., et al. (eds.) Flow and Contaminat Transport in Fractured Rock, pp. 1–37. Academic, San Diego (1993)

    Google Scholar 

  36. Bear, J.: Conceptual and mathematical modeling. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers – Concepts, Methods and Practices, pp. 127–161. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  37. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  38. Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)

    Google Scholar 

  39. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht (1987)

    Google Scholar 

  40. Beauwens, R.: Modfied incomplete factorization strategies. In: Axelsson, O., Kolotilina, L. (eds.) Precondioned Conjugate Gradient Methods. Lecture Notes in Mathematics, vol. 1457, pp. 1–16. Springer, Berlin/Heidelberg/New York (1990)

    Google Scholar 

  41. Beck, J.: Convection in a box of porous material saturated with fluid. Phys. Fluids 15(8), 1377–1383 (1972)

    Google Scholar 

  42. Behie, A., Vinsome, P.: Block iterative methods for fully implicit reservoir simulation. SPE J. 22(5), 658–668 (1982)

    Google Scholar 

  43. Bejan, A., Kraus, A.: Handbook of Heat Transfer, 1st edn. Wiley, Hoboken (2003)

    Google Scholar 

  44. Belytschko, T., Lu, Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Google Scholar 

  45. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)

    Google Scholar 

  46. Bergamaschi, L., Putti, M.: Mixed finite elements and Newton-like linearization for the solution of Richard’s equation. Int. J. Numer. Methods Eng. 45(8), 1025–1046 (1999)

    Google Scholar 

  47. Berger, R., Howington, S.: Discrete fluxes and mass balance in finite elements. J. Hydraul. Eng. 128(1), 87–92 (2002)

    Google Scholar 

  48. Bixler, N.: An improved time integrator for finite element analysis. Commun. Appl. Numer. Methods 5(2), 69–78 (1989)

    Google Scholar 

  49. Boussinesq, J.: Théorie analytique de la chaleur, vol. 2. Gauthier-Villars, Paris (1903)

    Google Scholar 

  50. Bowyer, A.: Computing Dirichlet tesselations. Comput. J. 24(2), 162–166 (1981)

    Google Scholar 

  51. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    Google Scholar 

  52. Brandt, A.: Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 19(1–4), 23–56 (1986)

    Google Scholar 

  53. Brandt, A., Fernando, H. (eds.): Double-Diffusive Convection. Geophysical Monograph, vol. 94. American Geophysical Union, Washington, DC (1995)

    Google Scholar 

  54. Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Methods – Theory and Applications. Springer, New York (1983)

    Google Scholar 

  55. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    Google Scholar 

  56. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Google Scholar 

  57. Brooks, A., Hughes, T.: Streamlin upwind/Petrov-Galerkin formulations for convective dominated flow with particular emphasis on the incompressible Navier-Sokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Google Scholar 

  58. Brooks, R., Corey, A.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. Proc. ASCE 92(IR2), 61–88 (1966)

    Google Scholar 

  59. Brown, G.: Henry Darcy and the making of a law. Water Resour. Res. 38(7) (2002). doi:10.1029/2001WR000727

    Google Scholar 

  60. Bruch, J., Street, R.: Two-dimensional dispersion. J. Sanit. Eng. Div. Proc. ASCE 93(SA6), 17–39 (1967)

    Google Scholar 

  61. Brunone, B., Ferrante, M., Romano, N., Santini, A.: Numerical simulations of one-dimensional infiltration into layered soils with the Richards equation using different estimates of the interlayer conductivity. Vadose Zone J. 2(2), 193–200 (2003)

    Google Scholar 

  62. Brutsaert, W.: Probability laws for pore-size distributions. Soil Sci. 101(2), 85–92 (1966)

    Google Scholar 

  63. Bués, M., Oltean, C.: Numerical simulations for saltwater intrusion by the mixed hybrid finite element method and discontinuous finite element method. Transp. Porous Media 40(2), 171–200 (2000)

    Google Scholar 

  64. Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and feature-preserving subdivision for high-quality tetrahedral meshes. Comput. Graph. Forum 29(1), 117–127 (2010)

    Google Scholar 

  65. Burnett, R., Frind, E.: Simulation of contaminant transport in three dimensions. 1. The alternating direction Galerkin technique. Water Resour. Res. 23(4), 683–694 (1987)

    Google Scholar 

  66. Caltagirone, J., Fabrie, P.: Natural convection in a porous medium at high Rayleigh numbers. Part 1 – Darcy’s model. Eur. J. Mech. B/Fluids 8, 207–227 (1989)

    Google Scholar 

  67. Caltagirone, J., Meyer, G., Mojtabi, A.: Structural thermoconvectives tridimensionnelles dans une couche poreuse horizontale. J. Méc. 20, 219–232 (1981)

    Google Scholar 

  68. Caltagirone, J., Fabrie, P., Combarnous, M.: De la convection naturelle oscillante en milieu poreux au chaos temporel? CR Acad. Sci. Paris 305, Ser.II, 549–553 (1987)

    Google Scholar 

  69. Carey, G.: Derivative calculation from finite element solutions. Comput. Methods. Appl. Mech. Eng. 35(1), 1–14 (1982)

    Google Scholar 

  70. Carey, G., Barth, W., Woods, J., Kirk, B., Anderson, M., Chow, S., Bangerth, W.: Modelling error and constitutive relations in simulation of flow and transport. Int. J. Numer. Methods Fluids 46(12), 1211–1236 (2004)

    Google Scholar 

  71. Carslaw, H., Jaeger, J.: Conduction of Heat in Solids. Oxford Science Publications, Oxford (1946, reprinted 2011)

    Google Scholar 

  72. Celia, M., Bouloutas, E., Zarba, R.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)

    Google Scholar 

  73. Chaudhry, M.: Open-Channel Flow. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  74. Chaudhry, M., Barber, M.: Open channel flow (Chapter 45). In: Johnson, R. (ed.) The Handbook of Fluid Dynamics, pp. 45:1–40. CRC/Springer, Boca Raton/Heidelberg (1998)

    Google Scholar 

  75. Chavent, G., Roberts, J.: A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Resour. 14(6), 329–348 (1991)

    Google Scholar 

  76. Cheng, R.: Modeling of hydraulic systems by finite element methods. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 11, pp. 207–283. Academic, New York (1978)

    Google Scholar 

  77. Cheng, P.: Heat transfer in geothermal systems. Adv. Heat Transf. 14, 1–105 (1979)

    Google Scholar 

  78. Cheng, A., Quazar, D.: Analytical solutions. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers – Concepts, Methods and Practices, pp. 163–191. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  79. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, 2nd edn. Wiley, Hoboken (2012)

    Google Scholar 

  80. Chilès, J.P., de Marsily, G.: Stochastic models of fracture systems and their use in flow and transport modeling. In: Bear, J., et al. (eds.) Flow and Contaminat Transport in Fractured Rock, pp. 169–236. Academic, San Diego (1993)

    Google Scholar 

  81. Christie, I., Mitchell, A.: Upwinding of high order Galerkin methods in conduction-convection problems. Int. J. Numer. Methods Eng. 12(11), 1764–1771 (1978)

    Google Scholar 

  82. Christie, I., Griffiths, D., Mitchell, A., Zienkiewicz, O.: Finite element methods for second order differential equations with significant first derivatives. Int. J. Numer. Methods Eng. 10(6), 1389–1396 (1976)

    Google Scholar 

  83. Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  84. Ciarlet, P., Lions, J.: Handbook of Numerical Analysis. Volume II. Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)

    Google Scholar 

  85. Clausnitzer, V.: Beitrag zur Bildung und Verifikation von Parametermodellen der Mehrphasenströmung in porösen Medien (contribution to the development and verification of parametric models for multiphase flow in porous media). Master’s thesis, Techn. University of Dresden, Dresden, Germany (1991)

    Google Scholar 

  86. Clement, T.: RT3D – a modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems. Technical report PNNL-11720, Pacific Northwest National Laboratory, Richland (1997)

    Google Scholar 

  87. Clement, T., Sun, Y., Hooker, B., Petersen, J.: Modeling multi-species reactive transport in groundwater aquifers. Groundw. Monit. Remediat. J. 18(2), 79–92 (1998)

    Google Scholar 

  88. Clough, R.: The finite element method in plane stress analysis. In: ASCE Structural Division. Proceedings of the 2nd Conference on Electronic Computation, Pittsburgh, pp. 345–378 (1960)

    Google Scholar 

  89. Cockburn, B., Gopalakrishnan, J., Wang, H.: Locally conservative fluxes for the continuous Galerkin method. SIAM J. Numer. Anal. 45(4), 1742–1776 (2007)

    Google Scholar 

  90. Codina, R.: A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Eng. 110(3–4), 325–342 (1993)

    Google Scholar 

  91. Codina, R.: Stability analysis of the forward Euler scheme for the convection-diffusion equation using SUPG formulation in space. Int. J. Numer. Methods Eng. 36(9), 1445–1464 (1993)

    Google Scholar 

  92. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998)

    Google Scholar 

  93. Codina, R.: On stabilized finite element methods for linear systems of convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 188(1–3), 61–82 (2000)

    Google Scholar 

  94. Coleman, B., Noll, W.: Thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Google Scholar 

  95. Combarnous, M., Borries, S.: Hydrothermal convection in saturated porous media. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 10, pp. 231–307. Academic, New York (1975)

    Google Scholar 

  96. Combarnous, M., Le Fur, B.: Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. CR Acad. Sci. Paris 269, Ser.B, 1009–1012 (1969)

    Google Scholar 

  97. Cooper, C., Glass, R., Tyler, S.: Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res. 33(4), 517–526 (1997)

    Google Scholar 

  98. Cooper, C., Glass, R., Tyler, S.: Effect of buoyancy ratio on the development of double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res. 37(9), 2323–2332 (2001)

    Google Scholar 

  99. Cordes, C., Kinzelbach, W.: Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992)

    Google Scholar 

  100. Corey, A.: Mechanics of immiscible fluids in porous media. Water Resources Publications, Highlands Ranch (1994)

    Google Scholar 

  101. Cornaton, F.: Deterministic models of groundwater age, life expectancy and transit time distributions in advective-dispersive systems. Ph.D. thesis, University of Neuchâtel, Centre of Hydrogeology, Neuchâtel (2004)

    Google Scholar 

  102. Cornaton, F.: Ground water – a 3-D ground water flow and transport finite element simulator. Technical report, University of Neuchâtel, Centre of Hydrogeology, Neuchâtel (2006)

    Google Scholar 

  103. Cornaton, F., Perrochet, P., Diersch, H.J.: A finite element formulation of the outlet gradient boundary condition for convective-diffusive transport problems. Int. J. Numer. Methods Eng. 61(15), 2716–2732 (2004)

    Google Scholar 

  104. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49(1), 1–23 (1943)

    Google Scholar 

  105. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1), 32–74 (1928)

    Google Scholar 

  106. Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

    Google Scholar 

  107. Croucher, A., O’Sullivan, M.: The Henry problem for saltwater intrusion. Water Resour. Res. 31(7), 1809–1814 (1995)

    Google Scholar 

  108. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of 24th ACM National Conference, New York, pp. 157–172 (1969)

    Google Scholar 

  109. Dagan, G.: Stochastic modeling of flow and transport: the broad perspective. In: Dagan, G., Neuman, S. (eds.) Subsurface flow and transport: a stochastic approach, pp. 3–19. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  110. Dahlquist, G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43 (1963)

    Google Scholar 

  111. Danckwerts, P.: Continuous flow systems: distribution of residence times. Chem. Eng. Sci. 2(1), 1–13 (1953)

    Google Scholar 

  112. Davis, S., De Wiest, R.: Hydrogeology, 2nd edn. Wiley, New York (1967)

    Google Scholar 

  113. Debéda, V., Caltagirone, J., Watremez, P.: Local multigrid refinement method for natural convection in fissured porous media. Numer. Heat Transf. Part B 28(4), 455–467 (1995)

    Google Scholar 

  114. De Boer, R.: Theory of Porous Media. Springer, Berlin (2000)

    Google Scholar 

  115. De Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    Google Scholar 

  116. De Groot, S., Mazur, P.: Non-equilibrium Thermodynamics. Dover, Mincola (1985)

    Google Scholar 

  117. De Josselin de Jong, J.: Singularity distributions for the analysis of multiple-fluid flow through porous media. J. Geophys. Res. 65(11), 3739–3758 (1960)

    Google Scholar 

  118. De Lemos, M.: Turbulence in porous media – modeling and applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  119. Delleur, J.: The Handbook of Groundwater Engineering. CRC/Springer, Boca Raton (1999)

    Google Scholar 

  120. De Marsily, G.: Quantitative Hydrogeology – Groundwater Hydrology for Engineers. Academic, Orlando (1986)

    Google Scholar 

  121. Dennis, J., Moré, J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)

    Google Scholar 

  122. Desai, C., Contractor, D.: Finite element analysis of flow, diffusion, and salt water intrusion in porous media. In: Bathe, K.J., et al. (eds.) Formulation and Computational Algorithms in Finite Element Analysis. MIT, Cambridge (1977)

    Google Scholar 

  123. Desai, C., Li, G.: A residual procedure and application for free surface flow in porous media. Adv. Water Resour. 6(1), 27–35 (1983)

    Google Scholar 

  124. D’Haese, C., Putti, M., Paniconi, C., Verhoest, N.: Assessment of adaptive and heuristic time stepping for variably saturated flow. Int. J. Numer. Methods Fluids 53(7), 1173–1193 (2007)

    Google Scholar 

  125. DHI-WASY: FEFLOW finite element subsurface flow and transport simulation system – User’s manual/Reference manual/White papers. v. 6.1. Technical report, DHI-WASY GmbH, Berlin (2012). http://www.feflow.com

  126. Diersch, H.J.: Die Berechnung stationärer zweidimensionaler und rotationssymmetrischer Potentialstrmungen mit Hilfe der Finite-Element-Methode (the computation of steady-state two-dimensional and axisymmetric potential flows by the finite element method). Wiss. Zeitschr. Techn. Univ. Dresden 24(3/4), 801–815 (1975)

    Google Scholar 

  127. Diersch, H.J.: Finite-Element-Programmsystem FINEL zur Lösung von praktischen Strömungsproblemen des Wasserbaues und der Hydromechanik (finite element programming system FINEL for the solution of practical flow problems in hydraulic engineering and hydrodynamics). Wasserwirtschaft-Wassertechnik 28(11), 385–388 (1978)

    Google Scholar 

  128. Diersch, H.J.: Finite-Element-Modellierung instationärer zweidimensionaler Stofftransportvorgänge im Grundwasser (finite element modeling transient two-dimensional mass transport processes in groundwater). In: Int. Konf. Simulation gekoppelter Transport-, Austausch- und Umwandlungsprozesse im Boden und Grundwasser, pp. 126–138. Tech. Univ. Dresen, Vol. 1, Dresden, Germany (1979)

    Google Scholar 

  129. Diersch, H.J.: Finite-element-Galerkin-Modell zur Simulation zweidimensionaler konvektiver und dispersiver Stofftransportprozesse im Boden (finite element Galerkin model for simulating convective and dispersive mass transport processes in soils). Acta Hydrophysica 26(1), 5–44 (1981)

    Google Scholar 

  130. Diersch, H.J.: Primitive variables finite element solutions of free convection flows in porous media. Z. Angew. Math. Mech. 61(7), 325–337 (1981)

    Google Scholar 

  131. Diersch, H.J.: On finite element upwinding and its numerical performance in simulating coupled convective transport processes. Z. Angew. Math. Mech. 63(10), 479–488 (1983)

    Google Scholar 

  132. Diersch, H.J.: Modellierung und numerische Simulation geohydrodynamischer Ttransportprozesse (modeling and numerical simulation of geohydrodynamic transport processes). Ph.D. thesis, Habilitation, Academy of Sciences, Berlin, Germany (1985)

    Google Scholar 

  133. Diersch, H.J.: Finite element modeling of recirculating density driven saltwater intrusion processes in groundwater. Adv. Water Resour. 11(1), 25–43 (1988)

    Google Scholar 

  134. Diersch, H.J.: Interactive, graphics-based finite element simulation of groundwater contamination processes. Adv. Eng. Softw. 15(1), 1–13 (1992)

    Google Scholar 

  135. Diersch, H.J.: Consistent velocity approximation in the finite-element simulation of density-dependent mass and heat transport. In: FEFLOW White Papers, vol. I, Chapter 16, pp. 283–314. DHI-WASY, Berlin (2001)

  136. Diersch, H.J.: The Petrov-Galerkin least square method (PGLS). In: FEFLOW White Papers, vol. I, Chapter 13, pp. 227–270. DHI-WASY, Berlin (2001)

  137. Diersch, H.J., Kolditz, O.: Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv. Water Resour. 21(5), 401–425 (1998)

    Google Scholar 

  138. Diersch, H.J., Kolditz, O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25(8–12), 899–944 (2002). doi:http://dx.doi.org/10.1016/S0309-1708(02)00063-5

  139. Diersch, H.J., Martin, P.: Comparison of typical modelling approaches in multiple free surface, perched water table situations. In: Kovar, K., et al. (eds.) FEM MODFLOW International Conference on Finite Element Models, MODFLOW, and More: Solving Groundwater Problems, Karlovy Vary, pp. 237–240 (2004)

    Google Scholar 

  140. Diersch, H., Nillert, P.: Saltwater intrusion processes in groundwater: novel computer simulations, field studies and interception techniques. In: Jones, G. (ed.) International Symposium on Groundwater Monitoring and Management, Dresden, 1987. IAHS Publication, No. 173, pp. 319–329. IAHS (1990)

    Google Scholar 

  141. Diersch, H.J., Perrochet, P.: On the primary variable switching technique for simulating unsaturated-saturated flows. Adv. Water Resour. 23(3), 271–301 (1999)

    Google Scholar 

  142. Diersch, H.J., Schirmer, A., Busch, K.F.: Analysis of flows with initially unknown discharge. J. Hydraul. Div. Proc. ASCE 103(HY3), 213–232 (1977)

    Google Scholar 

  143. Diersch, H.J., Prochnow, D., Thiele, M.: Finite-element analysis of dispersion-affected saltwater upconing below a pumping well. Appl. Math. Model. 8(5), 305–312 (1984)

    Google Scholar 

  144. Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010)

    Google Scholar 

  145. Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals. Comput. Geosci. 37(8), 1122–1135 (2011)

    Google Scholar 

  146. Diersch, H.J., Bauer, D., Heidemann, W., Rühaak, W., Schätzl, P.: Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation. Comput. Geosci. 37(8), 1136–1147 (2011)

    Google Scholar 

  147. Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: Part 2. Numerical simulation. Transp. Porous Media 86(3), 753–776 (2011)

    Google Scholar 

  148. Dogrul, E., Kadir, T.: Flow computation and mass balance in Galerkin finite-element groundwater models. J. Hydraul. Eng. 132(11), 1206–1214 (2006)

    Google Scholar 

  149. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Chichester (2003)

    Google Scholar 

  150. Doolen, G., Frisch, U., Hasslacher, B., Orszag, S., Wolfram, S.: Lattice Gas Methods for Partial Differential Equations. Addison-Wesley, Redwood City (1990)

    Google Scholar 

  151. Doyle, J.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd edn. Springer, New York (1997)

    Google Scholar 

  152. Durlofsky, L.: Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resour. Res. 30(4), 965–973 (1994)

    Google Scholar 

  153. Elder, J.: Steady free convection in a porous medium heated from below. J. Fluid Mech. 27(1), 29–48 (1967)

    Google Scholar 

  154. Elder, J.: Transient convection in a porous medium. J. Fluid Mech. 27(3), 609–623 (1967)

    Google Scholar 

  155. Engel, B., Navulur, K.: The role of geographical information systems in groundwater modeling (Chapter 21). In: Delleur, J. (ed.) The Handbook of Groundwater Engineering, pp. 21:1–16. CRC/Springer, Boca Raton (1999)

    Google Scholar 

  156. Engelman, M., Strang, G., Bathe, K.J.: The application of quasi-Newton methods in fluid mechanics. Int. J. Numer. Methods Eng. 17(5), 707–718 (1981)

    Google Scholar 

  157. Eringen, A.: Mechanics of Continua, 2nd edn. Krieger, Huntington (1980)

    Google Scholar 

  158. Eringen, A., Ingram, J.: A continuum theory of chemically reacting media – I. Int. J. Eng. Sci. 3(2), 197–212 (1965)

    Google Scholar 

  159. Eskilson, P., Claesson, J.: Simulation model for thermally interacting heat extraction boreholes. Numer. Heat Transf. 13(2), 149–165 (1988)

    Google Scholar 

  160. Evans, D., Raffensperger, J.: On the stream function for variable density groundwater flow. Water Resour. Res. 28(8), 2141–2145 (1992)

    Google Scholar 

  161. Fedorenko, R.: The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 4(3), 227–235 (1964)

    Google Scholar 

  162. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1996)

    Google Scholar 

  163. Finlayson, B.: The Method of Weighted Residuals and Variational Principles, with Applications in Fluid Mechanics, Heat and Mass Transfer. Academic, New York (1972)

    Google Scholar 

  164. Finlayson, B.: Numerical Methods for Problems with Moving Fronts. Ravenna Park Publishing, Seattle (1992)

    Google Scholar 

  165. Fletcher, C.: Computational Techniques for Fluid Dynamics, vols. 1 and 2. Springer, New York (1988)

    Google Scholar 

  166. Forsyth, P., Kropinski, M.: Monotonicity considerations for saturated-unsaturated subsurface flow. SIAM J. Sci. Comput. 18(5), 1328–1354 (1997)

    Google Scholar 

  167. Forsyth, P., Wu, Y., Pruess, K.: Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Adv. Water Resour. 18(1), 25–38 (1995)

    Google Scholar 

  168. Forsythe, G., Wasow, W.: Finite-Difference Methods for Partial Differential Equations. Wiley, New York (1960)

    Google Scholar 

  169. Franca, A., Haghighi, K.: Adaptive finite element analysis of transient thermal problems. Numer. Heat Transf. Part B 26(3), 273–292 (1994)

    Google Scholar 

  170. Freeze, R.: Three-dimensional transient, saturated-unsaturated flow in a ground water basin. Water Resour. Res. 7(2), 347–366 (1971)

    Google Scholar 

  171. Freeze, R., Cherry, J.: Groundwater. Prentice Hall, Englewood Cliffs (1979)

    Google Scholar 

  172. Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    Google Scholar 

  173. Frind, E.: An isoparametric Hermitian element for the solution of field problems. Int. J. Numer. Methods Eng. 11(6), 945–962 (1977)

    Google Scholar 

  174. Frind, E.: Simulation of long-term transient density-dependent transport in groundwater. Adv. Water Resour. 5(2), 73–88 (1982)

    Google Scholar 

  175. Frind, E.: Solution of the advection-dispersion equation with free exit boundary. Numer. Methods Partial Differ. Equ. 4(4), 301–313 (1988)

    Google Scholar 

  176. Fritsch, F., Carlson, R.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Google Scholar 

  177. Frolkovič, P.: Consistent velocity approximation for density driven flow and transport. In: Van Keer, R., et al. (eds.) Advanced Computational Methods in Engineering, Part 2, pp. 603–611. Shaker, Maastrich (1998)

    Google Scholar 

  178. Frolkovič, P., De Schepper, H.: Numerical modelling of convection dominated transport with density driven flow in porous media. Adv. Water Resour. 24(1), 63–72 (2001)

    Google Scholar 

  179. Fry, V., Istok, J., Guenther, R.: An analytical solution to the solute transport equation with rate-limited desorption and decay. Water Resour. Res. 29(9), 3201–3208 (1993)

    Google Scholar 

  180. Galeati, G., Gambolati, G., Neuman, S.: Coupled and partially coupled Eulerian-Lagrangian model of freshwater-seawater mixing. Water Resour. Res. 28(1), 149–165 (1992)

    Google Scholar 

  181. Galerkin, B.: Series solution of some problems of elastic equilibrium of rods and plates (in Russian). Vestn. Inzh. Tech. 19, 897–908 (1915)

    Google Scholar 

  182. Gambolati, G., Putti, M., Paniconi, C.: Three-dimensional model of coupled density-dependent flow and miscible salt transport. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, pp. 315–362. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  183. Garcia-Talavera, M., Laedermann, J., Decombaz, M., Daza, M., Quintana, B.: Coincidence summing corrections for the natural decay series in γ-ray spectrometry. J. Radiat. Isot. 54, 769–776 (2001)

    Google Scholar 

  184. Garder, A., Jr., Peaceman, D., Pozzi, A., Jr.: Numerical simulation of multi-dimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4(1), 26–36 (1964)

    Google Scholar 

  185. Gardner, W.: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85(4), 228–232 (1958)

    Google Scholar 

  186. Gartling, D., Hickox, C.: Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Methods Fluids 5(11), 995–1013 (1985)

    Google Scholar 

  187. Gebhart, B., Jaluria, Y., Mahajan, R., Sammakia, B.: Buoyancy-Induced Flows and Transport. Hemisphere, New York (1988)

    Google Scholar 

  188. George, P.: Automatic Mesh Generation: Application to Finite Element Methods. Wiley, Chichester (1991)

    Google Scholar 

  189. George, A., Liu, J.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs (1981)

    Google Scholar 

  190. Georgiadis, J., Catton, I.: Dispersion in cellular thermal convection in porous layers. Int. J. Heat Mass Transf. 31(5), 1081–1091 (1988)

    Google Scholar 

  191. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Google Scholar 

  192. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Google Scholar 

  193. Gockenbach, M.: Understanding and Implementing the Finite Element Method. SIAM, Philadelphia (2006)

    Google Scholar 

  194. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison Wesley, San Francisco (2002)

    Google Scholar 

  195. Gottardi, G., Venutelli, M.: A control-volume finite-element model for two-dimensional overland flow. Adv. Water Resour. 16(3), 277–284 (1993)

    Google Scholar 

  196. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    Google Scholar 

  197. Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive convection in a porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Transf. 39(7), 1363–1378 (1996)

    Google Scholar 

  198. Graf, T., Therrien, R.: Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures. Adv. Water Resour. 28(12), 1351–1367 (2005)

    Google Scholar 

  199. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Google Scholar 

  200. Grant, S.: Extensions of a temperature effects model for capillary pressure saturation relations. Water Resour. Res. 39(1), 1003:1–1003:10 (2003). doi:http://dx.doi.org/10.1029/2000WR000193

  201. Gray, W.: A derivation of the equations for multi-phase transport. Chem. Eng. Sci. 30(2), 229–233 (1975)

    Google Scholar 

  202. Gray, W.: Derivation of vertically averaged equations describing multiphase flow in porous media. Water Resour. Res. 18(6), 1705–1712 (1982). doi:http://dx.doi.org/10.1029/WR018i006p01705

  203. Gray, W.: Thermodynamics and constitutive theory for multiphase porous-media flow considering internal geometric constraints. Adv. Water Resour. 22(5), 521–547 (1999). doi:http://dx.doi.org/10.1016/S0309-1708(98)00021-9

  204. Gray, D., Giorgini, A.: On the validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19(5), 545–551 (1976)

    Google Scholar 

  205. Gray, W., Hassanizadeh, S.: Paradoxes and realities in unsaturated flow theory. Water Resour. Res. 27(8), 1847–1854 (1991). doi:http://dx.doi.org/10.1029/91WR01259

  206. Gray, W., Hassanizadeh, S.: Unsaturated flow theory including interfacial phenomena. Water Resour. Res. 27(8), 1855–1863 (1991). doi:http://dx.doi.org/10.1029/91WR01260

  207. Green, T.: Scales for double-diffusive fingering in porous media. Water Resour. Res. 20(9), 1225–1229 (1984)

    Google Scholar 

  208. Gresho, P., Lee, R.: Don’t suppress the wiggles – they’re telling you something! Comput. Fluids 9(2), 223–253 (1981)

    Google Scholar 

  209. Gresho, P., Sani, R.: Incompressible flow and the finite element method. Wiley, Chichester (1998)

    Google Scholar 

  210. Gresho, P., Lee, R., Sani, R.: Advection-dominated flows, with emphasis on the consequences of mass lumping (Chapter 19). In: Gallagher, R., et al. (eds.) Finite Elements in Fluids, pp. 335–350. Wiley, Chichester (1978)

    Google Scholar 

  211. Gresho, P., Lee, R., Sani, R.: On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. Technical report. Reprint UCRL-83282, Lawrence Livermore Laboratory, University of California (1979)

    Google Scholar 

  212. Gresho, P., Lee, R., Sani, R.: On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. In: Taylor, C., Morgan, K. (eds.) Recent Advances in Numerical Methods, vol. 1, pp. 27–79. Pineridge Press, Swansea (1980)

    Google Scholar 

  213. Gresho, P., Lee, R., Sani, R., Maslanik, M., Eaton, B.: The consistent Galerkin FEM for computing derived boundary quantities in thermal and/or fluids problems. Int. J. Numer. Methods Fluids 7(4), 371–394 (1987)

    Google Scholar 

  214. Griffiths, R.: Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221–248 (1981)

    Google Scholar 

  215. Grisak, G., Pickens, J.: Solute transport through fractured media: 1. The effect of matrix diffusion. Water Resour. Res. 16(4), 719–730 (1980)

    Google Scholar 

  216. Gureghian, A.: A two-dimensional finite element solution scheme for the saturated-unsaturated flow with applications to flow through ditch-drained soils. J. Hydrol. 50, 333–353 (1981)

    Google Scholar 

  217. Gustaffson, I.: On first order factorization methods for the solution of problems with mixed boundary conditions and problems with discontinuous matrial coefficients. Technical report, Chalmers University of Technology and Department of Computer Sciences, University of Goeteborg, Goeteborg (1977)

    Google Scholar 

  218. Guymon, G., Scott, V., Herrmann, L.: A general numerical solution of the two-dimensional diffusion-convection equation by the finite element method. Water Resour. Res. 6(6), 1611–1617 (1970)

    Google Scholar 

  219. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  220. Häfner, F., Boy, S.: Simulation des dichteabhängigen Stofftransportes im Grundwasser und Verifizierung am Beispiel der Saltpool-Experimente (simulation of density-dependent solute transport in groundwater and verification with saltpool experiments). Grundwasser 10(2), 93–101 (2005)

    Google Scholar 

  221. Häfner, F., Stüben, K.: Simulation and parameter identification of Oswald’s saltpool experiments with the SAMG multigrid-solver in the transport code MODCALIF. In: Kovar, K., et al. (eds.) FEM MODFLOW International Conference on Finite Element Models, MODFLOW, and More: Solving Groundwater Problems, Karlovy Vary, pp. 23–26 (2004)

    Google Scholar 

  222. Hægland, H., Dahle, H., Eigestad, G., Lie, K.A., Aavatsmark, I.: Improved streamlines and time-of-flight for streamline simulation on irregular grids. Adv. Water Resour. 30(4), 1027–1045 (2007)

    Google Scholar 

  223. Hansen, U., Yuen, D.: Formation of layered structures in double-diffusive convection as applied to the geosciences. In: Brandt, A., Fernando, H. (eds.) Double-Diffusive Convection. Geophysical Monograph, vol. 94, pp. 135–149. American Geophysical Union, Washington, DC (1995)

    Google Scholar 

  224. Hassanizadeh, S.: Modeling species transport by concentrated brine in aggregated porous media. Transp. Porous Media 3(3), 299–318 (1988)

    Google Scholar 

  225. Hassanizadeh, S.: On the transient non-Fickian dispersion theory. Transp. Porous Media 23(1), 107–124 (1996)

    Google Scholar 

  226. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: I. Averaging procedure. Adv. Water Resour. 2(3), 131–144 (1979). doi:http://dx.doi.org/10.1016/0309-1708(79)90025-3

  227. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: II. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 2(4), 191–203 (1979). doi:http://dx.doi.org/10.1016/0309-1708(79)90035-6

  228. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: III. Constitutive theory for porous media flow. Adv. Water Resour. 3(1), 25–40 (1980). doi:http://dx.doi.org/10.1016/0309-1708(80)90016-0

  229. Hassanizadeh, S., Gray, W.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25(3), 529–539 (1989)

    Google Scholar 

  230. Hassanizadeh, S., Gray, W.: Mechanics and thermodynamics of multiphase flow in porous media including interface boundaries. Adv. Water Resour. 13(4), 169–186 (1990). doi:http://dx.doi.org/10.1016/0309-1708(90)90040-B

  231. Hassanizadeh, S., Gray, W.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993). doi:http://dx.doi.org/10.1029/93WR01495

    Google Scholar 

  232. Hassanizadeh, S., Leijnse, A.: A non-linear theory of high-concentration-gradient dispersion in porous media. Adv. Water Resour. 18(4), 203–215 (1995). doi:http://dx.doi.org/10.1016/0309-1708(95)00012-8

  233. Hassanizadeh, S., Celia, M., Dahle, H.: Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 1(1), 38–57 (2002)

    Google Scholar 

  234. Heidemann, W.: Zur rechnerischen Ermittlung instationärer Temperaturfelder in geschlossener und diskreter Form (on computation of transient temperature fields in closed and discrete form). Ph.D. thesis, University of Stuttgart, Stuttgart, Germany (1995)

    Google Scholar 

  235. Heinrich, J., Zienkiewicz, O.: Quadratic finite element schemes for two-dimensional convective-transport problems. Int. J. Numer. Methods Eng. 11(12), 1831–1844 (1977)

    Google Scholar 

  236. Heinrich, J., Huyakorn, P., Zienkiewicz, O., Mitchell, A.: An ‘upwind’ finite element scheme for two-dimensional convective transport equation. Int. J. Numer. Methods Eng. 11(1), 131–143 (1977)

    Google Scholar 

  237. Hellström, G.: Ground heat storage. Thermal analyses of duct storage systems. I. Theory. Technical report, Department of Mathematical Physics, University of Lund, Sweden (1991)

    Google Scholar 

  238. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin (1997)

    Google Scholar 

  239. Hemker, K., Bakker, M.: Groundwater whirls in heterogeneous and anisotropic layered aquifers. In: Kovar, K., et al. (eds.) FEM MODFLOW International Conference on Finite Element Models, MODFLOW, and More: Solving Groundwater Problems, Karlovy Vary, pp. 27–30 (2004)

    Google Scholar 

  240. Hemker, K., Bakker, M.: Analytical solutions for whirling groundwater flow in two-dimensional heterogeneous anisotropic aquifers. Water Resour. Res. 42(W12419), 1–12 (2006). doi:http://dx.doi.org/10.1029/2006WR004901

  241. Hemker, K., van den Berg, E., Bakker, M.: Ground water whirls. Groundwater 42(2), 234–242 (2004)

    Google Scholar 

  242. Henry, H.: Effects of dispersion on salt encroachment in coastal aquifers. Technical report Water-Supply Paper 1613-C, pp. 70–84, US Geological Survey (1964)

    Google Scholar 

  243. Henry, D., Touihri, R., Bouhlila, R., Ben Hadid, H.: Multiple flow solutions in buoyancy induced convection in a porous square box. Water Resour. Res. 48(W10538), 1–15 (2012). doi:http://dx.doi.org/10.1029/2012WR011995

  244. Herbert, A., Jackson, C., Lever, D.: Coupled groundwater flow and solute transport with fluid density strongly dependent on concentration. Water Resour. Res. 24(10), 1781–1795 (1988)

    Google Scholar 

  245. Hervouet, J.M.: Hydrodynamics of Free Surface Flows. Wiley, Chichester (2007)

    Google Scholar 

  246. Herzberg, A.: Die Wasserversorgung einiger Nordseebäder (the water supply of parts of the North Sea coast in Germany). Z. Gasbeleucht. Wasserversorg. 44, 45, 815–819, 842–844 (1901)

    Google Scholar 

  247. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. Sect. B 49(6), 409–436 (1952)

    Google Scholar 

  248. Hickox, C., Gartling, D.: A numerical study of natural convection in a horizontal porous layer subjected to an end-to-end temperature difference. J. Heat Transf. 103(4), 797–802 (1981)

    Google Scholar 

  249. Hills, R., Hudson, D., Porro, I., Wierenga, P.: Modeling one-dimensional infiltration into very dry soils, 1. Model development and evaluation. Water Resour. Res. 25(6), 1259–1269 (1989)

    Google Scholar 

  250. Hindmarsh, A., Gresho, P., Griffiths, D.: The stability of explicit Euler time-integration for certain finite difference approximations of the multi-dimensional advection-diffusion equation. Int. J. Numer. Methods Fluids 4(9), 853–897 (1984)

    Google Scholar 

  251. Hinton, E., Campbell, J.: Local and global smoothing of discontinuous finite element functions using a least squares method. Int. J. Numer. Methods Eng. 8(3), 461–480 (1974)

    Google Scholar 

  252. Holst, P., Aziz, K.: Transient three-dimensional natural convection in confined porous media. Int. J. Heat Mass Transf. 15(1), 73–90 (1972)

    Google Scholar 

  253. Holzbecher, E.: Modeling of saltwater upconing. In: Wang, S. (ed.) Proceedings of the 2nd International Conference Hydro-Science and Hydro-Engineering, Beijing, vol. 2, Part A, pp. 858–865 (1995)

    Google Scholar 

  254. Holzbecher, E.: Comment on ‘constant-concentration boundary condition: lessons from the HYDROCOIN variable-density groundwater benchmark problem’ by Konikow, L.F., Sanford, W.E. and Campell, P.J. Water Resour. Res. 34(10), 2775–2778 (1998)

    Google Scholar 

  255. Holzbecher, E.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)

    Google Scholar 

  256. Hood, P.: Frontal solution program for unsymmetric matrices. Int. J. Numer. Methods Eng. 10(2), 379–399 (1976)

    Google Scholar 

  257. Hoopes, J., Harlemann, D.: Wastewater recharge and dispersion in porous media. J. Hydraul. Div. Proc. ASCE 93(HY5), 51–71 (1967)

    Google Scholar 

  258. Horne, R.: Three-dimensional natural convection in a confined porous medium heated from below. J. Fluid Mech. 92(4), 751–766 (1979)

    Google Scholar 

  259. Horne, R., Caltagirone, J.: On the evolution of thermal disturbances during natural convection in a porous medium. J. Fluid Mech. 100(2), 385–395 (1980)

    Google Scholar 

  260. Horne, R., O’Sullivan, M.: Oscillatory convection in a porous medium heated from below. J. Fluid Mech. 66(2), 339–352 (1974)

    Google Scholar 

  261. Horne, R., O’Sullivan, M.: Origin of oscillatory convection in a porous medium heated from below. Phys. Fluids 21(8), 1260–1264 (1978)

    Google Scholar 

  262. Horton, C., Rogers, F.: Convective currents in a porous medium. J. Appl. Phys. 16(6), 367–370 (1945)

    Google Scholar 

  263. Houlding, S.: 3D Geoscience Modeling. Springer, Berlin/Heidelberg (1994)

    Google Scholar 

  264. Hrenikoff, A.: Solution of problems in elasticity by the framework method. Trans. ASME J. Appl. Mech. 8, 169–175 (1941)

    Google Scholar 

  265. Hubbert, M.: The theory of ground-water motion. J. Geol. 48(8), 785–944 (1940)

    Google Scholar 

  266. Hughes, T.: A simple scheme for developing ‘upwind’ finite elements. Int. J. Numer. Methods Eng. 12(9), 1359–1365 (1978)

    Google Scholar 

  267. Hughes, T., Franca, L.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    Google Scholar 

  268. Hughes, T., Mallet, M.: A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58(3), 305–328 (1986)

    Google Scholar 

  269. Hughes, T., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusion systems. Comput. Methods Appl. Mech. Eng. 58(3), 329–336 (1986)

    Google Scholar 

  270. Hughes, J., Sanford, W.: SUTRA-MS, a version of SUTRA modified to simulate heat and multiple-solute transport. Technical report 2004-1207, p. 141, US Geological Survey, Reston (2004)

    Google Scholar 

  271. Hughes, J., Sanford, W., Vacher, H.: Numerical simulation of double-diffusive finger convection. Water Resour. Res. 41(W01019), 1–16 (2005). doi:http://dx.doi.org/10.1029/2003WR002777

  272. Hughes, T., Franca, L., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    Google Scholar 

  273. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Sokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54(2), 223–234 (1986)

    Google Scholar 

  274. Hughes, T., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54(3), 341–355 (1986)

    Google Scholar 

  275. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63(1), 97–112 (1987)

    Google Scholar 

  276. Hughes, T., Franca, L., Hulbert, G.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusion equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Google Scholar 

  277. Hughes, T., Engel, G., Mazzei, L., Larson, M.: The continuous Galerkin method is locally conservative. J. Comput. Phys. 163(2), 467–488 (2000)

    Google Scholar 

  278. Huyakorn, P.: Solution of steady-state, convective transport equation using an upwind finite element scheme. Appl. Math. Model. 1(4), 187–195 (1977)

    Google Scholar 

  279. Huyakorn, P., Nilkuha, K.: Solution of transient transport equation using an upstream finite-element scheme. Appl. Math. Model. 3(1), 7–17 (1979)

    Google Scholar 

  280. Huyakorn, P., Pinder, G.: Computational Methods in Subsurface Flow. Academic, New York (1983)

    Google Scholar 

  281. Huyakorn, P., Taylor, C.: Finite element models for coupled groundwater flow and convective dispersion. In: Gray, W., et al. (eds.) 1st International Conference Finite Elements in Water Resources, Princeton, pp. 1.131–1.151. Pentech, London (1976)

    Google Scholar 

  282. Huyakorn, P., Andersen, P., Güven, P., Molz, F.: A curvi-linear finite element model for simulating two-well tracer tests and transport in stratified aquifers. Water Resour. Res. 22(5), 663–678 (1986)

    Google Scholar 

  283. Huyakorn, P., Andersen, P.F., Mercer, J., White, H., Jr.: Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour. Res. 23(2), 293–312 (1987)

    Google Scholar 

  284. Idelsohn, S., Oñate, E.: Finite volumes and finite elements: two ‘good friends’. Int. J. Numer. Methods Eng. 37(19), 3323–3341 (1994)

    Google Scholar 

  285. Ingram, J., Eringen, A.: A continuum theory of chemically reacting media – II constitutive equations of reacting fluid mixtures. Int. J. Eng. Sci. 5(4), 289–322 (1967)

    Google Scholar 

  286. Irmay, S.: On the hydraulic conductivity of unsaturated soil. Trans. Am. Geophys. Union 35, 463–468 (1954)

    Google Scholar 

  287. Irons, B.: A frontal solution program. Int. J. Numer. Methods Eng. 2(1), 5–32 (1970)

    Google Scholar 

  288. Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7(3), 169–182 (2003)

    Google Scholar 

  289. Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G.: The saltpool benchmark problem – numerical simulation of saltwater upconing in a porous medium. Adv. Water Resour. 25(3), 335–348 (2002)

    Google Scholar 

  290. Johns, R., Rivera, A.: Comment on ‘dispersive transport dynamics in a strongly coupled groundwater-brine flow system’ by Oldenburg, C.M. and Pruess, K. Water Resour. Res. 32(11), 3405–3410 (1996)

    Google Scholar 

  291. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  292. Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservations laws. Math. Comput. 54(189), 107–129 (1990)

    Google Scholar 

  293. Josnin, J.Y., Jourde, H., Fénart, P., Bidaux, P.: A three-dimensional model to simulate joint networks in layered rocks. Can. J. Earth Sci. 39(10), 1443–1455 (2002)

    Google Scholar 

  294. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)

    Google Scholar 

  295. Ju, S.H., Kung, K.J.: Mass types, element orders and solution schemes for the Richards equation. Comput. Geosci. 23(2), 175–187 (1997)

    Google Scholar 

  296. Kakaç, S., Kilkiş, B., Kulacki, F., Arinç, F. (eds.): Convective Heat and Mass Transfer in Porous Media. NATO ASI Series. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  297. Kaluarachchi, J., Parker, J.: An efficient finite element method for modeling multiphase flow. Water Resour. Res. 25(1), 43–54 (1989)

    Google Scholar 

  298. Kämpf, M., Holfelder, T., Montenegro, H.: Identification and parametrization of flow processes in artificial capillary barriers. Water Resour. Res. 39(10,1276), 1–9 (2003). doi:http://dx.doi.org/10.1029/2002WR001860

  299. Kanney, J., Miller, C., Kelley, C.: Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Adv. Water Resour. 26(3), 247–261 (2003)

    Google Scholar 

  300. Kantorovich, L.: A direct method of solving problems on the minimum of a double integral. Bull. Acad. Sci. USSR 5, 647–652 (1933)

    Google Scholar 

  301. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Google Scholar 

  302. Karypis, G., Kumar, V.: METIS – a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. v. 4.0. Technical report, Department of Computer Science, University of Minnesota, Minnesota (1998). http://www.cs.umn.edu/~metis

  303. Kastanek, F., Nielsen, D.: Description of soil water characteristics using cubic spline interpolation. Soil Sci. Soc. Am. J. 65(2), 279–283 (2001)

    Google Scholar 

  304. Katto, Y., Masuoka, I.: Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transf. 10(3), 297–309 (1967)

    Google Scholar 

  305. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Google Scholar 

  306. Kazemi, G., Lehr, J., Perrochet, P.: Groundwater Age. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  307. Kelly, D., Nakazawa, S., Zienkiewicz, O., Heinrich, J.: A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems. Int. J. Numer. Methods Eng. 15(11), 1705–1711 (1980)

    Google Scholar 

  308. Kimura, S., Schubert, G., Straus, J.: Route to chaos in porous-medium thermal convection. J. Fluid Mech. 166, 23–32 (1986)

    Google Scholar 

  309. Kimura, S., Schubert, G., Straus, J.: Instabilities of steady, periodic and quasi-periodic modes of convection in porous media. ASME J. Heat Transf. 109(2), 350–355 (1987)

    Google Scholar 

  310. Kinzelbach, W.: Groundwater Modelling: An Introduction with Sample Programs in BASIC. Elsevier, Amsterdam (1986)

    Google Scholar 

  311. Kirkland, M., Hills, R., Wierenga, P.: Algorithms for solving Richards’ equation for variably saturated soils. Water Resour. Res. 28(8), 2049–2058 (1992)

    Google Scholar 

  312. Knabner, P., Frolkovič, P.: Consistent velocity approximation for finite volume or element discretizations of density driven flow in porous media. In: Aldama, A., et al. (eds.) Computational Methods in Water Resources XI – Computational Methods in Subsurface Flow and Transport Problems, vol. 1, pp. 93–100. Computational Mechanics Publications, Southampton (1996)

    Google Scholar 

  313. Knupp, P.: A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face. Adv. Water Resour. 19(2), 83–95 (1996)

    Google Scholar 

  314. Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC, Boca Raton (1994)

    Google Scholar 

  315. Knuth, D.: The Art of Computer Programming, vol. 3: Sorting and Searching. Addison-Wesley, Reading (1997)

    Google Scholar 

  316. Kolditz, O.: Strömung, Stoff- und Wärmetransport im Kluftgestein (flow, mass and heat transport in fractured rock). Gebr. Borntraeger, Berlin/Stuttgart (1997)

    Google Scholar 

  317. Kolditz, O.: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin (2002)

    Google Scholar 

  318. Kolditz, O., Ratke, R., Diersch, H.J., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable-density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1998)

    Google Scholar 

  319. König, C.: Operator split for three dimensional mass transport equation. In: Peters, A., et al. (eds.) Proceedings of the 10th International Conference on Computational Methods in Water Resources, Heidelberg, vol. 1, pp. 309–316. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  320. Konikow, L., Sanford, W., Campbell, P.: Constant-concentration boundary condition: lessons from the HYDROCOIN variable-density groundwater benchmark problem. Water Resour. Res. 33(10), 2253–2261 (1997)

    Google Scholar 

  321. Kool, J., Parker, J.: Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23(1), 105–114 (1987)

    Google Scholar 

  322. Krieger, R., Hatchett, J., Poole, J.: Preliminary survey of the saline-water resources of the United States. Technical report Water-Supply Paper 1374, p. 172, US Geological Survey (1957)

    Google Scholar 

  323. Kvernvold, O., Tyvand, P.: Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90(4), 609–624 (1979)

    Google Scholar 

  324. Kvernvold, O., Tyvand, P.: Dispersion effects on thermal convection in porous media. J. Fluid Mech. 99(4), 673–686 (1980)

    Google Scholar 

  325. Kvernvold, O., Tyvand, P.: Dispersion effects on thermal convection in a Hele-Shaw cell. Int. J. Heat Mass Transf. 24(5), 887–890 (1981)

    Google Scholar 

  326. Labbé, P., Garon, A.: A robust implementation of Zienkiewicz and Zhu’s local patch recovery method. Commun. Numer. Methods Eng. 11(5), 427–434 (1995)

    Google Scholar 

  327. LaBolle, E., Clausnitzer, V.: Comment on Russo [1991], Serrano [1990, 1998], and other applications of the water-content-based form of Richards’ equation to heterogeneous soils. Water Resour. Res. 35(2), 605–607 (1999)

    Google Scholar 

  328. Lacombe, S., Sudicky, E., Frape, S., Unger, A.: Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour. Res. 31(8), 1871–1882 (1995)

    Google Scholar 

  329. Lam, L., Fredlund, D.: Saturated-unsaturated transient finite element seepage model for geotechnical engineering. Adv. Water Resour. 7(3), 132–136 (1984)

    Google Scholar 

  330. Lamarche, L., Kajl, S., Beauchamp, B.: A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 39(2), 187–200 (2010)

    Google Scholar 

  331. Lambert, J.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)

    Google Scholar 

  332. Lanczos, C.: Solutions of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. Sect. B 49(1), 33–53 (1952)

    Google Scholar 

  333. Lapwood, E.: Convection of a fluid in a porous medium. Math. Proc. Camb. Phil. Soc. 44(4), 508–521 (1948)

    Google Scholar 

  334. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Google Scholar 

  335. Lehmann, F., Ackerer, P.: Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transp. Porous Media 31(3), 275–292 (1998)

    Google Scholar 

  336. Leijnse, A.: Three-dimensional modeling of coupled flow and transport in porous media. Ph.D. thesis, University of Notre Dame, Indiana (1992)

    Google Scholar 

  337. Leijnse, A.: Comparison of solution methods for coupled flow and transport in porous media. In: Peters, A., et al. (eds.) Proceedings of the 10th International Conference on Computational Methods in Water Resources, Heidelberg, vol. 1, pp. 489–496. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  338. Leismann, H., Frind, E.: A symmetric-matrix time integration scheme for the efficient solution of advection-dispersion problems. Water Resour. Res. 25(6), 1133–1139 (1989)

    Google Scholar 

  339. Lenhard, R., Parker, J.: A model for hysteretic constitutive relations governing multiphase flow. 2. Permeability-saturation relations. Water Resour. Res. 23(12), 2197–2206 (1987)

    Google Scholar 

  340. Lenhard, R., Parker, J., Kaluarachchi, J.: Comparing simulated and experimental hysteretic two-phase transient fluid flow phenomena. Water Resour. Res. 27(8), 2113–2124 (1991)

    Google Scholar 

  341. Leone, J., Gresho, P., Chan, S., Lee, R.: A note on the accuracy of Gauss-Legendre quadrature in the finite element method. Int. J. Numer. Methods Eng. 14(5), 769–773 (1979)

    Google Scholar 

  342. Letniowski, F.: An overview of preconditioned iterative methods for sparse matrix equations. Technical report, CS-89-26, Faculty of Mathematics, University of Waterloo, Waterloo (1989)

    Google Scholar 

  343. Lever, D., Jackson, C.: On the equations for the flow of concentrated salt solution through a porous medium. Technical report, AERE-R 11765, Harwell Laboratory, Oxfordshire (1985)

    Google Scholar 

  344. Lewis, R., Schrefler, B.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)

    Google Scholar 

  345. Lewis, R., Morgan, K., Thomas, H., Seetharamu, K.: The Finite Element Method in Heat Transfer Analysis. Wiley, Chichester (1996)

    Google Scholar 

  346. Li, W., Chen, Z., Ewing, R., Huan, G., Li, B.: Comparison of the GMRES and ORTHOMIN for the black oil model in porous media. Int. J. Numer. Methods Fluids 48(5), 501–519 (2005)

    Google Scholar 

  347. Lian, Y.Y., Hsu, K.H., Shao, Y.L., Lee, Y.M., Jeng, Y.W., Wu, J.S.: Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications. Comput. Phys. Commun. 175(11–12), 721–737 (2006)

    Google Scholar 

  348. Lichtner, P.: Continuum formulation of multicomponent-multiphase reactive transport. In: Lichtner, P., et al. (eds.) Reactive Transport in Porous Media. Reviews in Mineralogy, vol. 34, pp. 1–81. Mineralogical Society of America, Washington, DC (1996)

    Google Scholar 

  349. Lichtner, P., Kelkar, S., Robinson, B.: Critique of Burnett-Frind dispersion tensor for axisymmetric porous media. Technical report LA-UR-08-04495, Los Alamos National Laboratory (2008)

    Google Scholar 

  350. Liggett, J., Liu, P.F.: The Boundary Integral Equation Method for Porous Media Flow. Unwin Hyman, Boston (1982)

    Google Scholar 

  351. Lindstrom, F.: Pulsed dispersion of trace chemical concentrations in a saturated sorbing porous medium. Water Resour. Res. 12(2), 229–238 (1976)

    Google Scholar 

  352. Liu, G.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC, Boca Raton (2003)

    Google Scholar 

  353. Löhner, R.: Applied CFD Techniques. Wiley, Chichester (2001)

    Google Scholar 

  354. Löhner, R., Morgan, K.: An unstructured multigrid method for elliptic problems. Int. J. Numer. Methods Eng. 24(1), 101–115 (1987)

    Google Scholar 

  355. Lynch, D.: Mass conservation in finite element groundwater models. Adv. Water Resour. 7(2), 67–75 (1984)

    Google Scholar 

  356. Maidment, D.: Handbook of Hydrology. McGraw-Hill, New York (1993)

    Google Scholar 

  357. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–468 (1973)

    Google Scholar 

  358. Matthews, C., Cook, F., Knight, J., Braddock, R.: Handling the water content discontinuity at the interface between layered soils with a numerical scheme. In: SuperSoil 2004 – 3rd Australian New Sealand Soils Conference, University of Sydney, Australia, pp. 1–9, 5–9 Dec 2004

    Google Scholar 

  359. Mazzia, A., Putti, M.: High order Godunov mixed methods on tetrahedral meshes for density driven flow simulations in porous media. J. Comput. Phys. 208(1), 154–174 (2005)

    Google Scholar 

  360. Mazzia, A., Bergamaschi, L., Putti, M.: On the reliability of numerical solutions of brine transport in groundwater: analysis of infiltration from a salt lake. Transp. Porous Media 43(1), 65–86 (2001)

    Google Scholar 

  361. McBride, D., Cross, M., Croft, N., Bennett, C., Gebhardt, J.: Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries. Int. J. Numer. Methods Fluids 50(9), 1085–1117 (2006)

    Google Scholar 

  362. McCord, J.: Application of second-type boundaries in unsaturated flow modeling. Water Resour. Res. 27(12), 3257–3260 (1991)

    Google Scholar 

  363. McDonald, M., Harbaugh, A.: A modular three-dimensional finite-difference ground-water flow model. Technical report, Open-File Report 83–875, U.S. Geological Survey (1988)

    Google Scholar 

  364. McKibbin, R., O’Sullivan, M.: Onset of convection in a layered porous medium heated from below. J. Fluid Mech. 96(2), 375–393 (1980)

    Google Scholar 

  365. McKibbin, R., O’Sullivan, M.: Heat transfer in layered porous medium heated from below. J. Fluid Mech. 111, 141–173 (1981)

    Google Scholar 

  366. McKibbin, R., Tyvand, P.: Anisotropic modelling of thermal convection in multilayered porous media. J. Fluid Mech. 118, 315–339 (1982)

    Google Scholar 

  367. McKibbin, R., Tyvand, P.: Thermal convection in a porous medium composed of alternating thick and thin layers. Int. J. Heat Mass Transf. 26(5), 761–780 (1983)

    Google Scholar 

  368. McKibbin, R., Tyvand, P.: Thermal convection in a porous medium with horizontal cracks. Int. J. Heat Mass Transf. 27(7), 1007–1023 (1984)

    Google Scholar 

  369. McLaren, R.: GRIDBUILDER: a generator for 2D triangular finite element grids and grid properties – User’s guide. Technical report, Waterloo Institute for Groundwater Research, University of Waterloo, Waterloo (1995). http://www.science.uwaterloo.ca/~mclaren/

  370. Meesters, A., Hemker, C., van den Berg, E.: An approximate analytical solution for well flow in anisotropic layered aquifer systems. J. Hydrol. 296(1–4), 241–253 (2004)

    Google Scholar 

  371. Mercer, J., Pinder, G.: Finite element analysis of hydrothermal systems. In: Oden, J., et al. (eds.) Finite Element Methods in Flow Problems. Proceedings of 1st Symposium, Swansea, pp. 401–414. University of Alabama Press, Huntsville (1974)

    Google Scholar 

  372. Merchant, M., Weatherill, N.: Adaptivity techniques for compressible inviscid flows. Comput. Methods Appl. Mech. Eng. 106(1–2), 83–106 (1993)

    Google Scholar 

  373. Milly, P.: A mass-conservative procedure for time-stepping in models of unsaturated flow. Adv. Water Resour. 8(1), 32–36 (1985)

    Google Scholar 

  374. Minkowycz, W., Sparrow, E., Murthy, J.: Handbook of Numerical Heat Transfer, 2nd edn. Wiley, Hoboken (2006)

    Google Scholar 

  375. Mirnyy, V., Clausnitzer, V., Diersch, H.J., Rosati, R., Schmidt, M., Beruda, H.: Wicking in absorbent swelling porous materials (Chapter 7). In: Masoodi, R., Pillai, K. (eds.) Wicking in Porous Materials, pp. 161–200. CRC/Taylor and Francis, Boca Raton (2013)

    Google Scholar 

  376. Mitchell, A., Griffiths, R.: The Finite Difference Method in Partial Differential Equations. Wiley, Chichester (1980)

    Google Scholar 

  377. Mitchell, A., Wait, R.: The Finite Element Method in Partial Differential Equations. Wiley, Chichester (1977)

    Google Scholar 

  378. Mosé, R., Siegel, P., Ackerer, P., Chavent, G.: Application of the mixed hybrid finite element approximation in a groundwater flow model: luxury or necessity? Water Resour. Res. 30(11), 3001–3012 (1994)

    Google Scholar 

  379. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–521 (1976). doi:http://dx.doi.org/10.1029/WR012i003p00513

    Google Scholar 

  380. Murray, B., Chen, C.: Double-diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Google Scholar 

  381. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). Reprinted by J.W. Edwards, Ann Arbor, 1946

    Google Scholar 

  382. Narasimhan, T., Whitherspoon, P.: Numerical model for saturated-unsaturated flow in deformable porous media, 3, applications. Water Resour. Res. 14(6), 1017–1034 (1978)

    Google Scholar 

  383. Neuman, S.: Saturated-unsaturated seepage by finite elements. J. Hydraul. Div. Proc. ASCE 99(HY12), 2233–2250 (1973)

    Google Scholar 

  384. Neuman, S., Witherspoon, P.: Analysis of nonsteady flow with a free surface using the finite element method. Water Resour. Res. 7(3), 611–623 (1971)

    Google Scholar 

  385. Nguyen, H., Reynen, J.: A space-time least-square finite element scheme for advection-diffusion equations. Comput. Methods Appl. Mech. Eng. 42(3), 331–342 (1984)

    Google Scholar 

  386. Nguyen, V., Gray, W., Pinder, G., Botha, J., Crerar, D.: A theoretical investigation on the transport of chemicals in reactive porous media. Water Resour. Res. 18(4), 1149–1156 (1982)

    Google Scholar 

  387. Nield, D.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4(3), 553–560 (1968)

    Google Scholar 

  388. Nield, D.: The stability of convective flows in porous media. In: Kakaç, S., et al. (eds.) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, pp. 79–122. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  389. Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  390. Nield, D., Simmons, C., Kuznetsov, A., Ward, J.: On the evolution of salt lakes: episodic convection beneath an evaporating salt lake. Water Resour. Res. 44(W02439), 1–13 (2008). doi:http://dx.doi.org/10.1029/2007WR006161

  391. Nillert, P.: Beitrag zur Simulation von Brunnen als innere Randbedingungen in horizontalebenen diskreten Grundwasserströmungsmodellen (simulation of wells as inner boundary conditions for horizontal 2D discrete groundwater flow models). Ph.D. thesis, Technical University Dresden, Dresden, Germany (1976)

    Google Scholar 

  392. Nordbotten, J., Celia, M., Dahle, H., Hassanizadeh, S.: Interpretation of macroscale variables in Darcy’s law. Water Resour. Res. 43(W08430), 1–9 (2007). doi:http://dx.doi.org/10.1029/2006WR005018

  393. Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömung infolge von Temperaturdifferenzen (on the thermal conduction of liquids with regard to flows due to temperature differences). Ann. Phys. Chem. 7, 271–292 (1879)

    Google Scholar 

  394. Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)

    Google Scholar 

  395. OECD: The international INTRAVAL project, Phase 1, Summary report. Technical report, OECD, Paris (1994)

    Google Scholar 

  396. Ogata, A., Banks, R.: A solution of the differential equation of longitudinal dispersion in porous media. Technical report professional paper 411-A, A1-A9, US Geological Survey (1961)

    Google Scholar 

  397. Oldenburg, C., Pruess, K.: On numerical modeling of capillary barriers. Water Resour. Res. 29(4), 1045–1056 (1993)

    Google Scholar 

  398. Oldenburg, C., Pruess, K.: Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Resour. Res. 31(2), 289–302 (1995)

    Google Scholar 

  399. Oldenburg, C., Pruess, K.: Layered thermohaline convection in hypersaline geothermal systems. Transp. Porous Media 33(1/2), 29–63 (1998)

    Google Scholar 

  400. Oldenburg, C., Pruess, K., Travis, B.: Reply to: comment on ‘dispersive transport dynamics in a strongly coupled groundwater-brine flow system’ by Johns, R.T. and Rivera, A. Water Resour. Res. 32(11), 3411–3412 (1996)

    Google Scholar 

  401. Oltean, C., Bués, M.: Coupled groundwater flow and transport in porous media. A conservative or non-conservative form? Transp. Porous Media 44(2), 219–246 (2001)

    Google Scholar 

  402. Oñate, E., Bugeda, G.: Mesh optimality criteria for adaptive finite element computations. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications – Highlights 1993, pp. 121–135. Wiley, Chichester (1994)

    Google Scholar 

  403. Oshima, M., Hughes, T., Jansen, K.: Consistent finite element calculation of boundary and internal fluxes. Int. J. Comput. Fluid Dyn. 9(3–4), 227–235 (1998)

    Google Scholar 

  404. Oswald, S.: Dichteströmungen in porösen Medien: Dreidimensionale Experimente und Modellierungen (density driven flows in porous media: three-dimensional experiments and modeling). Ph.D. thesis, ETH Zurich, Switzerland (1998)

    Google Scholar 

  405. Oswald, S., Kinzelbach, W.: A three-dimensional physical model for verification of variable-density flow codes. In: Stauffer, F., et al. (eds.) MODELCARE99 – Calibration and Reliability in Groundwater Modelling: Coping with Uncertainty, Zurich, 1999. IAHS Publication, No. 265, pp. 399–404. IAHS (2000)

    Google Scholar 

  406. Oswald, S., Kinzelbach, W.: Three-dimensional physical benchmark experiments to test variable-density flow models. J. Hydrol. 290(1–2), 22–42 (2004)

    Google Scholar 

  407. Panday, S., Forsyth, P., Falta, R., Wu, Y.S., Huyakorn, P.: Considerations of robust compositional simulations of subsurface nonaquaeous phase liquid contamination and remediation. Water Resour. Res. 31(5), 1273–1289 (1995)

    Google Scholar 

  408. Paniconi, C., Putti, M.: A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour. Res. 30(12), 3357–3374 (1994)

    Google Scholar 

  409. Panton, R.: Incompressible Flow. Wiley, New York (1996)

    Google Scholar 

  410. Park, C.H., Aral, M.: Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations. J. Contam. Hydrol. 92(1–2), 33–49 (2007)

    Google Scholar 

  411. Parker, J., Lenhard, R.: A model for hysteretic constitutive relations governing multiphase flow. 1. Saturation-pressure relations. Water Resour. Res. 23(12), 2187–2196 (1987)

    Google Scholar 

  412. Pasdunkorale, J., Turner, I.: A second order finite volume technique for simulating transport in anisotropic media. Int. J. Numer. Methods Heat Fluid Flow 13(1), 31–56 (2003)

    Google Scholar 

  413. Pasquetti, R., Rapetti, F.: Spectral element methods on triangles and quadrilaterals: comparisons and applications. J. Comput. Phys. 198(1), 349–362 (2004)

    Google Scholar 

  414. Perrochet, P.: Finite hyperelements: a 4D geometrical framework using covariant bases and metric tensors. Commun. Numer. Methods Eng. 11(6), 525–534 (1995)

    Google Scholar 

  415. Perrochet, P., Bérod, D.: Stability of the standard Crank-Nicolson-Galerkin scheme applied to the diffusion-convection equation: some new insights. Water Resour. Res. 29(9), 3291–3297 (1993)

    Google Scholar 

  416. Peters, A., Durner, W., Wessolek, G.: Consistent parameter constraints for soil hydraulic functions. Adv. Water Resour. 34(10), 1352–1365 (2011)

    Google Scholar 

  417. Philip, J.: Theory of infiltration. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 5, pp. 215–296. Academic, New York (1969)

    Google Scholar 

  418. Piessanetzky, S.: Sparse Matrix Technology. Academic, New York (1984)

    Google Scholar 

  419. Pinder, G.: Groundwater Modeling Using Geographical Information Systems. Wiley, New York (2002)

    Google Scholar 

  420. Pinder, G., Cooper, H.: A numerical technique for calculating the transient position of the saltwater front. Water Resour. Res. 6(3), 875–882 (1970)

    Google Scholar 

  421. Pinder, G., Gray, W.: Finite Element Simulation in Surface and Subsurface Hydrology. Academic, New York (1977)

    Google Scholar 

  422. Pinder, G., Gray, W.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken (2008)

    Google Scholar 

  423. Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989)

    Google Scholar 

  424. Pokrajac, D., Lazic, R.: An efficient algorithm for high accuracy particle tracking in finite elements. Adv. Water Resour. 25(4), 353–369 (2002)

    Google Scholar 

  425. Pollock, D.: Semianalytical computation of path lines for finite-difference models. Groundwater 26(6), 743–750 (1988)

    Google Scholar 

  426. Polubarinova-Kochina, P.: Theory of Groundwater Movement. Princeton University Press, Princeton (1962)

    Google Scholar 

  427. Prakash, A.: Finite element solutions of the non-self-adjoint convective-dispersion equation. Int. J. Numer. Methods Eng. 11(2), 269–287 (1977)

    Google Scholar 

  428. Prasad, V., Kladias, N.: Non-Darcy natural convection in saturated porous media. In: Kakaç, S., et al. (eds.) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, pp. 173–224. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  429. Prasad, A., Simmons, C.: Unstable density-driven flow in heterogeneous media: a stochastic study of the Elder [1967b] ‘short heater’ problem. Water Resour. Res. 39(1), 107 (2003). doi:http://dx.doi.org/10.1029/2002WR001290

  430. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  431. Pringle, S., Glass, R., Cooper, C.: Double-diffusive finger convection in a Hele-Shaw cell: an experiment exploring the evolution of concentration fields, length scales and mass transfer. Transp. Porous Media 47(2), 195–214 (2002)

    Google Scholar 

  432. Putti, M., Paniconi, C.: Picard and Newton linearization for the coupled model of saltwater intrusion in aquifer. Adv. Water Resour. 18(3), 159–170 (1995)

    Google Scholar 

  433. Rannacher, R., Bangerth, W.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel (2003)

    Google Scholar 

  434. Raper, J.: Three Dimensional Applications in Geographic Information Systems. Taylor and Francis, London (1989)

    Google Scholar 

  435. Rathfelder, K., Abriola, L.: Mass conservative numerical solutions of the head-based Richards equation. Water Resour. Res. 30(9), 2579–2586 (1994)

    Google Scholar 

  436. Raviart, P., Thomas, J.: A mixed finite element method for the second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  437. Reddy, S., Gartling, D.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd edn. CRC, Boca Raton (2001)

    Google Scholar 

  438. Reilly, T., Goodman, A.: Quantitative analysis of saltwater-freshwater relationships in groundwater systems – a historical perspective. J. Hydrol. 80(1–2), 125–160 (1985)

    Google Scholar 

  439. Reilly, T., Goodman, A.: Analysis of saltwater upconing beneath a pumping well. J. Hydrol. 89(3–4), 169–204 (1987)

    Google Scholar 

  440. Richards, L.: Capillary conduction of liquids through porous media. Physics 1, 318–333 (1931)

    Google Scholar 

  441. Richtmeyer, R., Morton, K.: Difference Methods for Initial Value Problems, 2nd edn. Wiley-Interscience, New York (1963)

    Google Scholar 

  442. Rifai, S., Newell, C., Miller, C., Taffinder, S., Rounsaville, M.: Simulation of natural attenuation with multiple electron acceptors. Bioremediation 3(1), 53–58 (1995)

    Google Scholar 

  443. Rijtema, P.: An analysis of actual evapotranspiration. Technical report 659, p. 170, Center for Agricultural Publishing and Documentation, Wageningen (1965)

    Google Scholar 

  444. Riley, D., Winters, K.: Modal exchange mechanisms in Lapwood convection. J. Fluid Mech. 204, 325–358 (1989)

    Google Scholar 

  445. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, 1–61 (1908)

    Google Scholar 

  446. Roache, P.: On artificial viscosity. J. Comput. Phys. 10(2), 169–184 (1972)

    Google Scholar 

  447. Rohsenow, W., Hartnett, J., Cho, Y.: Handbook of Heat Transfer, 3rd edn. McGraw-Hill, New York (1998)

    Google Scholar 

  448. Ross, B.: The diversion capacity of capillary barriers. Water Resour. Res. 26(10), 2625–2629 (1990)

    Google Scholar 

  449. Ross, P., Bistow, K.: Simulating water movement in layered and gradational soils using the Kirchhoff transform. Soil Sci. Soc. Am. J. 54(6), 1519–1524 (1990)

    Google Scholar 

  450. Rubin, H.: Onset of thermohaline convection in a cavernous aquifer. Water Resour. Res. 12(2), 141–147 (1976)

    Google Scholar 

  451. Rubin, H., Roth, C.: On the growth of instabilities in groundwater due to temperature and salinity gradients. Adv. Water Resour. 2, 69–76 (1979)

    Google Scholar 

  452. Rubin, H., Roth, C.: Thermohaline convection in flowing groundwater. Adv. Water Resour. 6(3), 146–156 (1983)

    Google Scholar 

  453. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM - Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  454. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Google Scholar 

  455. Sadek, E.: A scheme for the automatic generation of triangular finite elements. Int. J. Numer. Methods Eng. 15(12), 1813–1822 (1980)

    Google Scholar 

  456. Salvadori, M., Baron, M.: Numerical Methods in Engineering. Prentice Hall, Englewood Cliffs (1961)

    Google Scholar 

  457. Sarler, B., Gobin, D., Goyeau, B., Perko, J., Power, H.: Natural convection in porous media – dual reciprocity boundary element method solution of the Darcy model. Int. J. Numer. Methods Fluids 33(2), 279–312 (2000)

    Google Scholar 

  458. Schätzl, P., Clausnitzer, V., Diersch, H.J.: Groundwater modeling for mining and underground construction – challenges and solutions. In: MODFLOW and More: Ground Water and Public Policy, Golden, pp. 58–61. International Ground Water Modeling Center (IGWMC), Colorado School of Mines, US (2008)

    Google Scholar 

  459. Scheidegger, A.: The Physics of Flow Through Porous Media. MacMillan, New York (1957)

    Google Scholar 

  460. Scheidegger, A.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)

    Google Scholar 

  461. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Google Scholar 

  462. Schiesser, W.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic, San Diego (1991)

    Google Scholar 

  463. Schneider, K.: Investigation on the influence of free thermal convection on heat transfer through granular material. In: Proceedings of the 11th International Congress of Refrigeration, Paper 11-4, Munich, pp. 247–253. Pergamon, Oxford (1963)

    Google Scholar 

  464. Schotting, R., Moser, H., Hassanizadeh, S.: High-concentration-gradient dispersion in porous media: experiments, analysis and approximations. Adv. Water Resour. 22(7), 665–680 (1999). doi:http://dx.doi.org/10.1016/S0309-1708(98)00052-9

  465. Schubert, G., Straus, J.: Three-dimensional and multicellular steady and unsteady convection in fluid-saturated porous media at high Rayleigh numbers. J. Fluid Mech. 94(1), 25–38 (1979)

    Google Scholar 

  466. Schubert, G., Straus, J.: Transitions in time-dependent thermal convection in fluid-saturated porous media. J. Fluid Mech. 121, 301–313 (1982)

    Google Scholar 

  467. Schulz, R.: Analytical model calculations for heat exchange in a confined aquifer. J. Geophys. 61, 12–20 (1987)

    Google Scholar 

  468. Schwarz, H.: Methode der finiten Elemente (Method of Finite Elements). B.G. Teubner, Stuttgart (1991)

    Google Scholar 

  469. Scott, P., Farquhar, G., Kouwen, N.: Hysteresis effects on net infiltration. In: Advances in Infiltration. Publication 11–83, pp. 163–170. American Society of Agricultural Engineers, St. Joseph (1983)

    Google Scholar 

  470. Segol, G.: Classic Groundwater Simulations: Proving and Improving Numerical Models. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  471. Segol, G., Pinder, G.: Transient simulation of saltwater intrusion in southeastern Florida. Water Resour. Res. 12(1), 65–70 (1976)

    Google Scholar 

  472. Segol, G., Pinder, G., Gray, W.: A Galerkin-finite element technique for calculating the transient position of the saltwater front. Water Resour. Res. 11(2), 343–347 (1975)

    Google Scholar 

  473. Selker, J., Keller, C., McCord, J.: Vadose Zone Processes. Lewis, Boca Raton (1999)

    Google Scholar 

  474. Shamsai, A., Narasimhan, T.: A numerical investigation of free surface-seepage face relationship under steady state flow conditions. Water Resour. Res. 27(3), 409–421 (1991)

    Google Scholar 

  475. Shewchuk, J.: TRIANGLE: a two-dimensional quality mesh generator and Delaunay triangulator. Technical report, University of California, Computer Science Division, Berkeley (2005). https://www.cs.cmu.edu/~quake/triangle.html

  476. Siegel, P., Mosé, R., Ackerer, P., Jaffre, J.: Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Int. J. Numer. Methods Fluids 24(6), 595–613 (1997)

    Google Scholar 

  477. Signorelli, S., Bassetti, S., Pahud, D., Kohl, T.: Numerical evaluation of thermal response tests. Geothermics 36(2), 141–166 (2007)

    Google Scholar 

  478. Simmons, C.: Variable density groundwater flow: from current challenges to future possibilities. Hydrogeol. J. 13(1), 116–119 (2005)

    Google Scholar 

  479. Simmons, C., Narayan, K., Wooding, R.: On a test case for density-dependent groundwater flow and solute transport models: the salt lake problem. Water Resour. Res. 35(12), 3607–3620 (1999)

    Google Scholar 

  480. Simmons, C., Fenstemaker, T., Sharp, J., Jr.: Variable-density flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam. Hydrol. 52(1–4), 245–275 (2001)

    Google Scholar 

  481. Simmons, C., Pierini, M., Hutson, J.: Laboratory investigation of variable-density flow and solute transport in unsaturatedsaturated porous media. Transp. Porous Media 47(2), 215–244 (2002)

    Google Scholar 

  482. Simpson, M., Clement, T.: Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour. Res. 40(W01504), 1–11 (2004). doi:http://dx.doi.org/10.1029/2003WR002199

  483. Singh, V.: Kinematic Wave Modeling in Water Resources: Surface-Water Hydrology. Wiley, New York (1996)

    Google Scholar 

  484. Smith, I., Griffiths, D.: Programming the Finite Element Method, 5th edn. Wiley, Chichester (2004)

    Google Scholar 

  485. Smith, I., Farraday, R., O’Connor, B.: Rayleigh-Ritz and Galerkin finite elements for diffusion-convection problems. Water Resour. Res. 9(3), 593–606 (1973)

    Google Scholar 

  486. Sneddon, I.: Elements in Partial Differential Equations. McGraw-Hill, New York (1957)

    Google Scholar 

  487. Sonnenveld, P.: CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10(1), 36–52 (1989)

    Google Scholar 

  488. Sposito, G., Chu, S.Y.: The statistical mechanical theory of groundwater flow. Water Resour. Res. 17(4), 885–892 (1981). doi:http://dx.doi.org/10.1029/WR017i004p00885

  489. Springer, J.: Shape-derived anisotropy directions in quadrangle and brick finite elements. Commun. Numer. Methods Eng. 12(6), 351–357 (1996)

    Google Scholar 

  490. Srivastava, R., Yeh, T.C.: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27(5), 753–762 (1991)

    Google Scholar 

  491. Steen, P., Aidun, C.: Transition of oscillatory convective heat transfer in a fluid-saturated porous medium. AIAA J. Thermophys. Heat Transf. 1(3), 268–273 (1987)

    Google Scholar 

  492. Strack, O.: Groundwater Mechanics. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  493. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973)

    Google Scholar 

  494. Straus, J.: Large amplitude convection in porous media. J. Fluid Mech. 64(1), 51–63 (1974)

    Google Scholar 

  495. Straus, J., Schubert, G.: Three-dimensional convection in a cubic box of fluid-saturated porous material. J. Fluid Mech. 91(1), 155–165 (1979)

    Google Scholar 

  496. Straus, J., Schubert, G.: Modes of finite-amplitude three-dimensional convection in rectangular boxes of fluid-saturated porous material. J. Fluid Mech. 103, 23–32 (1981)

    Google Scholar 

  497. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput. 13(3–4), 419–451 (1983)

    Google Scholar 

  498. Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C., Schüller, A. (eds.) Multigrid, pp. 413–532. Elsevier Ltd., Amsterdam (2001)

    Google Scholar 

  499. Stüben, K., Clees, T.: SAMG: algebraic multigrid methods for systems, Users’s manual. Technical report, Fraunhofer Institute for Algorithms and Scientific Computing SCAI, St. Augustin (2005). http://www.scai.fraunhofer.de/en/business-research-areas/numerical-software/products/samg/samg-user-area.html

  500. Stumm, W., Morgan, J.: Aquatic Chemistry. Wiley-Interscience, New York (1981)

    Google Scholar 

  501. Suárez, J., Abad, P., Plaza, A., Padrón, M.: Computational aspects of the refinement of 3D tetrahedral meshes. J. Comput. Methods Sci. Eng. 5(4), 215–224 (2005)

    Google Scholar 

  502. Sudicky, E., Unger, A., Lacombe, S.: A noniterative technique for the direct implementation of well bore boundary conditions in three-dimensional heterogeneous formations. Water Resour. Res. 31(2), 411–415 (1995)

    Google Scholar 

  503. Sun, Y., Petersen, J., Clement, T.: Analytical solutions for multiple species reactive transport in multiple dimensions. J. Contam. Hydrol. 35(4), 429–440 (1999)

    Google Scholar 

  504. Sun, Y., Petersen, J., Clement, T., Skeen, R.: Development of analytical solutions for multispecies transport with serial and parallel reactions. Water Resour. Res. 35(1), 185–190 (1999)

    Google Scholar 

  505. Tam, C.: The drag on a cloud of spherical particles in low Reynold number flow. J. Fluid Mech. 38(3), 537–546 (1969)

    Google Scholar 

  506. Tang, D., Frind, E., Sudicky, E.: Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour. Res. 17(3), 555–564 (1981)

    Google Scholar 

  507. Taunton, J., Lightfoot, E., Green, T.: Thermohaline instability and salt fingers in a porous medium. Phys. Fluids 15(5), 748–753 (1972)

    Google Scholar 

  508. Taylor, G.: Dispersion of solute matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186–203 (1953)

    Google Scholar 

  509. Taylor, R.: Solution of linear equations by a profile solver. Eng. Comput. 2(4), 344–350 (1985)

    Google Scholar 

  510. Teza, G., Galgaro, A., De Carli, M.: Long-term performance of an irregular shaped borehole heat exchanger system: analysis of real pattern and regular grid approximation. Geothermics 43, 45–56 (2012)

    Google Scholar 

  511. Theis, C.: The relation between lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans. Am. Geophys. Union 16(2), 519–524 (1935). 16th annual meeting

    Google Scholar 

  512. Thiele, K.: Adaptive finite volume discretization of density driven flows in porous media. Ph.D. thesis, Institute of Applied Mathematics, University of Erlangen-Nürnberg, Germany (1999)

    Google Scholar 

  513. Thiele, M., Diersch, H.J.: ‘Overshooting’ effects due to hydrodispersive mixing of saltwater layers in aquifers. Adv. Water Resour. 9(1), 24–33 (1986)

    Google Scholar 

  514. Thompson, J., Soni, B., Weatherill, N.: Handbook of Grid Generation. CRC, Boca Raton (1999)

    Google Scholar 

  515. Tien, C.L., Vafai, K.: Convective and radiative heat transfer in porous media. Adv. Appl. Mech. 27, 225–281 (1989)

    Google Scholar 

  516. Toffoli, T., Margolus, N.: Cellular Automata Machines. MIT, Cambridge (1988)

    Google Scholar 

  517. Toride, N., Leij, F., van Genuchten, M.: The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Vers. 2.1. Technical report No. 137, US Salinity Laboratory, Riverside (1999)

    Google Scholar 

  518. Trevisan, O., Bejan, A.: Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transf. 28(8), 1597–1611 (1985)

    Google Scholar 

  519. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Elsevier Ltd., Amsterdam (2001)

    Google Scholar 

  520. Truesdell, C.: Rational thermodynamics: a course of lectures on selected topics. McGraw-Hill, New York (1969)

    Google Scholar 

  521. Truesdell, C., Toupin, R.: Principles of classical mechanics and field theory. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 700–704. Springer, Berlin (1960)

    Google Scholar 

  522. Turner, J.: Buoyancy Effects in Fluids. Cambridge University Press, New York (1979)

    Google Scholar 

  523. Turner, J.: Multicomponent convection. Annu. Rev. Fluid Mech. 17, 11–44 (1985)

    Google Scholar 

  524. Turner, J.: Laboratory models of double-diffusive processes. In: Brandt, A., Fernando, H. (eds.) Double-Diffusive Convection. Geophysical Monograph, vol. 94, pp. 11–29. American Geophysical Union, Washington, DC (1995)

    Google Scholar 

  525. Turner, M., Clough, R., Martin, H., Topp, L.: Stiffness and deflection analysis of complex structures. J. Aerosp. Sci. 23(9), 805–823 (1956)

    Google Scholar 

  526. Tyvand, P.: Thermohaline instability in anisotropic porous media. Water Resour. Res. 16(2), 325–330 (1980)

    Google Scholar 

  527. US Salinity Laboratory: STANMOD (STudio of ANalytical MODels): computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Technical report, US Salinity Laboratory, Riverside (2012). http://www.ars.usda.gov/services/software/software.htm

  528. Vachaud, G., Vauclin, M.: Comments on ‘a numerical model based on coupled one-dimensional Richards and Boussinesq equations’ by Mary F. Pikul, Robert L. Street, and Irwin Remson. Water Resour. Res. 11(3), 506–509 (1975). doi:http://dx.doi.org/10.1029/WR011i003p00506

  529. Vachaud, G., Vauclin, M., Khanji, D.: Étude expérimentale des transferts bidimensionnels dans la zone non-saturée. Application á l’étude du drainage d’une nappe á surface libre. Houille Blanche (1), 65–74 (1973)

    Google Scholar 

  530. Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999)

    Google Scholar 

  531. Vadasz, P., Olek, S.: Computational recovery of the homoclinic orbit in porous media convection. Int. J. Non-Linear Mech. 34(6), 1071–1075 (1999)

    Google Scholar 

  532. Vadasz, P., Olek, S.: Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp. Porous Media 37(1), 69–91 (1999)

    Google Scholar 

  533. Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000)

    Google Scholar 

  534. Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor and Francis, Boca Raton (2005)

    Google Scholar 

  535. van der Vorst, H.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Google Scholar 

  536. van Genuchten, M.: Calculating the unsaturated hydraulic conductivity with a new closed form analytical model. Technical report 78-WR-08, Water Resources Program, Princeton University, Princeton (1978)

    Google Scholar 

  537. van Genuchten, M.: Mass transport in saturated-unsaturated madia: one-dimensional solutions. Technical report 78-WR-11, Water Resources Program, Princeton University, Princeton (1978)

    Google Scholar 

  538. van Genuchten, M.: Numerical solution of the one-dimensional saturated-unsaturated flow equation. Technical report 78-WR-09, Water Resources Program, Princeton University, Princeton (1978)

    Google Scholar 

  539. van Genuchten, M.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Google Scholar 

  540. van Genuchten, M., Alves, W.: Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Technical report technical bulletin number 1661, p. 149, US Department of Agriculture (1982)

    Google Scholar 

  541. van Genuchten, M., Gray, W.: Analysis of some dispersion corrected numerical schemes for solution of the transport equation. Int. J. Numer. Methods Eng. 12(3), 387–404 (1978)

    Google Scholar 

  542. van Genuchten, M., Wagenet, R.: Two-site/two-region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci. Soc. Am. J. 53(5), 1303–1310 (1989)

    Google Scholar 

  543. van Reeuwijk, M., Mathias, S., Simmons, C., Ward, J.: Insights from a pseudospectral approach to the Elder problem. Water Resour. Res. 45(W04416), 1–13 (2009). doi:http://dx.doi.org/10.1029/2008WR007421

    Google Scholar 

  544. VDI: VDI-Wärmeatlas: Wärmeübertragung bei der Strömung durch Rohre (heat transfer in flow through pipes). Tech. rep., VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2006)

    Google Scholar 

  545. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, New York/Stuttgart (1996)

    Google Scholar 

  546. Verruijt, A.: Theory of Groundwater Flow. MacMillan, London (1970)

    Google Scholar 

  547. Vinsome, P.: ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations, paper SPE 5739. In: Proceedings of the 4th Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, Los Angeles, pp. 149–159 (1976)

    Google Scholar 

  548. Volker, R., Rushton, K.: An assessment of the importance of some parameters for seawater intrusion and a comparison of dispersive and sharp-interface modeling approaches. J. Hydrol. 56(3–4), 239–250 (1982)

    Google Scholar 

  549. Volocchi, A., Street, R., Roberts, P.: Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulation. Water Resour. Res. 17(5), 1517–1527 (1981)

    Google Scholar 

  550. Voss, C.: A finite-element simulation model for saturated-unsaturated fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. Technical report, Water Resources Investigations, report 84-4369, p. 409, US Geological Survey (1984)

    Google Scholar 

  551. Voss, C.: USGS SUTRA code – history, practical use, and application in Hawaii. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, pp. 249–313. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  552. Voss, C., Souza, W.: Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 23(10), 1851–1866 (1987)

    Google Scholar 

  553. Šimůnek, J., Vogel, T., van Genuchten, M.: The SWMS-2D code for simulating water flow and solute transport in two-dimensional variably saturated media. Technical report no. 126, US Salinity Laboratory, Riverside (1992)

    Google Scholar 

  554. Šimůnek, J., Kodešová, R., Gribb, M., van Genuchten, M.: Estimating hysteresis in the soil water retention function from cone permeameter experiments. Water Resour. Res. 35(5), 1329–1345 (1999)

    Google Scholar 

  555. Wait, R., Mitchell, A.: Finite Element Analysis and Applications. Wiley, New York (1985)

    Google Scholar 

  556. Walker, K., Homsy, G.: A note on convective instabilities in Boussinesq fluids and porous media. ASME J. Heat Transf. 99(2), 338–339 (1977)

    Google Scholar 

  557. Watson, D.: Computing n-dimensional Delaunay tesselation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)

    Google Scholar 

  558. Webb, S.: Generalization of Ross’ tilted capillary barrier diversion formula for different two-phase characteristic curves. Water Resour. Res. 33(8), 1855–1859 (1997)

    Google Scholar 

  559. Wendland, E.: Numerische Simulation von Strömung und hochadvektivem Stofftransport in geklüftetem, porösem Medium (numerical simulation of flow and advection-dominant mass transport in fractured and porous medium). Ph.D. thesis, Dissertation, Ruhr University Bochum, Bochum, Germany (1996). Report No. 96-6

    Google Scholar 

  560. Wendland, E., Himmelsbach, T.: Transport simulation with stochastic aperture for a single fracture – comparison with a laboratory experiment. Adv. Water Resour. 25(1), 19–32 (2002)

    Google Scholar 

  561. Werner, A., Bakker, M., Post, V., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C., Barry, D.: Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013)

    Google Scholar 

  562. Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)

    Google Scholar 

  563. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  564. Wiedemeier, T., Swanson, M., Moutoux, D., Kinzie Gordon, E., Wilson, J., Wilson, B., Kampbell, D., Haas, P., Miller, R., Hansen, J., Chapelle, F.: Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. Technical report EPA/600/R-98/128, US Environmental Protection Agency (1998)

    Google Scholar 

  565. Wilkinson, F.: Chemical Kinetics and Reaction Mechanisms. Van Nostrand Reinhold, New York (1980)

    Google Scholar 

  566. Williams, G., Miller, C., Kelley, C.: Transformation approaches for simulating flow in variably saturated porous media. Water Resour. Res. 36(4), 923–934 (2000)

    Google Scholar 

  567. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, Reading (1994)

    Google Scholar 

  568. Wood, W., Lewis, R.: A comparison of time marching schemes for the transient heat conduction equation. Int. J. Numer. Methods Eng. 9(3), 679–689 (1975)

    Google Scholar 

  569. Wooding, R.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2(3), 273–285 (1957)

    Google Scholar 

  570. Wooding, R.: Variable-density saturated flow with modified Darcy’s law: the salt lake problem and circulation. Water Resour. Res. 43(W02429), 1–10 (2007). doi:http://dx.doi.org/10.1029/2005WR004377

  571. Wooding, R., Tyler, S., White, I.: Convection in groundwater below an evaporating salt lake, 1. Onset of instability. Water Resour. Res. 33(6), 1199–1217 (1997)

    Google Scholar 

  572. Wooding, R., Tyler, S., White, I., Anderson, P.: Convection in groundwater below an evaporating salt lake, 2. Evolution of fingers or plumes. Water Resour. Res. 33(6), 1219–1228 (1997)

    Google Scholar 

  573. Woods, J., Carey, G.: Upwelling and downwelling behavior in the Elder-Voss-Souza benchmark. Water Resour. Res. 43(W12405), 1–12 (2007). doi:http://dx.doi.org/10.1029/2006WR004918

  574. Xie, Y., Simmons, C., Werner, A., Ward, J.: Effect of transient solute loading on free convection in porous media. Water Resour. Res. 46(W11511), 1–16 (2010). doi:http://dx.doi.org/10.1029/2010WR009314

    Google Scholar 

  575. Xie, Y., Simmons, C., Werner, A.: Speed of free convective fingering in porous media. Water Resour. Res. 47(W11501), 1–16 (2011). doi:http://dx.doi.org/10.1029/2011WR010555

    Google Scholar 

  576. Xie, Y., Simmons, C., Werner, A., Diersch, H.J.: Prediction and uncertainty of free convection phenomena in porous media. Water Resour. Res. 48(2,W02535), 1–12 (2012). doi:http://dx.doi.org/10.1029/2011WR011346

  577. Yavuzturk, C., Spitler, J., Rees, S.: A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans. 105(2), 465–474 (1999)

    Google Scholar 

  578. Yeh, G.T.: On the computation of Darcy velocity and mass balance in the finite element modeling of groundwater flow. Water Resour. Res. 17(5), 1529–1534 (1981)

    Google Scholar 

  579. Yeh, G.T.: Computational Subsurface Hydrology: Fluid Flows. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  580. Yeh, G.T.: Computational Subsurface Hydrology: Reactions, Transport, and Fate. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  581. Yeh, G.T., Chen, J.R., Bensabat, J.: A three-dimensional finite-element model of transient free surface flow in aquifers. In: Peters, A., et al. (eds.) Proceedings of the 10th International Conference on Computational Methods in Water Resources, Heidelberg, vol. 1, pp. 131–138. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  582. Younes, A., Ackerer, P.: Empirical versus time stepping with embedded error control for density-driven flow in porous media. Water Resour. Res. 46(W08523), 1–8 (2010). doi:http://dx.doi.org/10.1029/2009WR008229

  583. Younes, A., Ackerer, P., Mosé, R.: Modeling variable density flow and solute transport in porous medium: 2. Re-evaluation of the salt dome flow problem. Transp. Porous Media 35(3), 375–394 (1999)

    Google Scholar 

  584. Yu, C.C., Heinrich, J.: Petrov-Galerkin methods for the time-dependent convective transport equation. Int. J. Numer. Methods Eng. 23(5), 883–901 (1986)

    Google Scholar 

  585. Yu, C.C., Heinrich, J.: Petrov-Galerkin methods for multidimensional, time-dependent, convective-diffusion equations. Int. J. Numer. Methods Eng. 24(11), 2201–2215 (1987)

    Google Scholar 

  586. Zgainski, F.X., Coulomb, J.L., Maréchal, Y., Claeyssen, F., Brunotte, X.: A new family of finite elements: the pyramidal elements. IEEE Trans. Magn. 32(3), 1393–1396 (1996)

    Google Scholar 

  587. Zheng, C., Bennett, G.: Applied Contaminant Transport Modeling: Theory and Practice. Van Nostrand Reinhold, New York (1995)

    Google Scholar 

  588. Zidane, A., Younes, A., Huggenberger, P., Zechner, E.: The Henry semianalytical problem for saltwater intrusion with reduced dispersion. Water Resour. Res. 48(W06533), 1–10 (2012). doi:http://dx.doi.org/10.1029/2011WR011157

  589. Zienkiewicz, O., Cheung, Y.: The Finite Element Method in Structural and Continuums Mechanics. McGraw-Hill, London (1967)

    Google Scholar 

  590. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  591. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 2: Solid and Structural Mechanics, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  592. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 3: Fluid Dynamics, 5th edn. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  593. Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

    Google Scholar 

  594. Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Google Scholar 

  595. Zienkiewicz, O., Heinrich, J., Huyakorn, P., Mitchell, A.: An ‘upwind’ finite element scheme for two-dimensional convective transport equations. Int. J. Numer. Methods Eng. 11(1), 131–143 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diersch, HJ.G. (2014). Flow in Variably Saturated Porous Media. In: FEFLOW. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_10

Download citation

Publish with us

Policies and ethics