Skip to main content

Introduction

  • Chapter
  • First Online:
FEFLOW

Abstract

Flow, mass and heat transport through porous and fractured media occurs in many branches of engineering and science. Of particular concern are those processes in the subsurface occurring beneath the surface of the earth’s ground, that means flow and transport in geologic media with their complexity and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In thermodynamics, rational thermodynamics is a very general phenomenological and macroscopic theory for deriving constitutive equations, basically established by C. Truesdell [520] and his students W. Noll and B. Coleman in the 1960s, and is distinct from other categories of thermodynamics such as the classical thermodynamics and (extended) irreversible thermodynamics.

References

  1. Anderson, M., Woessner, W.: Applied groundwater modeling – simulation of flow and advective transport. Academic, San Diego (1992)

    Google Scholar 

  2. Baker, A.: Finite element method (Chapter 28). In: Johnson, R. (ed.) The Handbook of Fluid Dynamics, pp. 28:1–98. CRC/Springer, Boca Raton/Heidelberg (1998)

    Google Scholar 

  3. Barenblatt, G., Entov, V., Ryzhik, V.: Theory of Fluid Flows Through Natural Rocks. Kluwer Academic, Dordrecht (1990)

    Book  Google Scholar 

  4. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  5. Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  6. Bear, J.: Modeling flow and contaminant transport in fractured rocks. In: Bear, J., et al. (eds.) Flow and Contaminat Transport in Fractured Rock, pp. 1–37. Academic, San Diego (1993)

    Chapter  Google Scholar 

  7. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  8. Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)

    Book  Google Scholar 

  9. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    Book  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  11. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, 2nd edn. Wiley, Hoboken (2012)

    Book  Google Scholar 

  12. Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  13. Ciarlet, P., Lions, J.: Handbook of Numerical Analysis. Volume II. Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)

    Google Scholar 

  14. Corey, A.: Mechanics of immiscible fluids in porous media. Water Resources Publications, Highlands Ranch (1994)

    Google Scholar 

  15. Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

    Google Scholar 

  16. Dagan, G.: Stochastic modeling of flow and transport: the broad perspective. In: Dagan, G., Neuman, S. (eds.) Subsurface flow and transport: a stochastic approach, pp. 3–19. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  17. De Boer, R.: Theory of Porous Media. Springer, Berlin (2000)

    Book  Google Scholar 

  18. Delleur, J.: The Handbook of Groundwater Engineering. CRC/Springer, Boca Raton (1999)

    Google Scholar 

  19. De Marsily, G.: Quantitative Hydrogeology – Groundwater Hydrology for Engineers. Academic, Orlando (1986)

    Google Scholar 

  20. DHI-WASY: FEFLOW finite element subsurface flow and transport simulation system – User’s manual/Reference manual/White papers. v. 6.1. Technical report, DHI-WASY GmbH, Berlin (2012). http://www.feflow.com

  21. Doolen, G., Frisch, U., Hasslacher, B., Orszag, S., Wolfram, S.: Lattice Gas Methods for Partial Differential Equations. Addison-Wesley, Redwood City (1990)

    Google Scholar 

  22. Eringen, A., Ingram, J.: A continuum theory of chemically reacting media – I. Int. J. Eng. Sci. 3(2), 197–212 (1965)

    Article  Google Scholar 

  23. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1996)

    Book  Google Scholar 

  24. Finlayson, B.: The Method of Weighted Residuals and Variational Principles, with Applications in Fluid Mechanics, Heat and Mass Transfer. Academic, New York (1972)

    Google Scholar 

  25. Finlayson, B.: Numerical Methods for Problems with Moving Fronts. Ravenna Park Publishing, Seattle (1992)

    Google Scholar 

  26. Fletcher, C.: Computational Techniques for Fluid Dynamics, vols. 1 and 2. Springer, New York (1988)

    Google Scholar 

  27. Freeze, R., Cherry, J.: Groundwater. Prentice Hall, Englewood Cliffs (1979)

    Google Scholar 

  28. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  Google Scholar 

  29. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  30. Gray, W.: A derivation of the equations for multi-phase transport. Chem. Eng. Sci. 30(2), 229–233 (1975)

    Article  Google Scholar 

  31. Gray, W.: Derivation of vertically averaged equations describing multiphase flow in porous media. Water Resour. Res. 18(6), 1705–1712 (1982). doi:http://dx.doi.org/10.1029/WR018i006p01705

  32. Gray, W.: Thermodynamics and constitutive theory for multiphase porous-media flow considering internal geometric constraints. Adv. Water Resour. 22(5), 521–547 (1999). doi:http://dx.doi.org/10.1016/S0309-1708(98)00021-9

  33. Gresho, P., Sani, R.: Incompressible flow and the finite element method. Wiley, Chichester (1998)

    Google Scholar 

  34. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: I. Averaging procedure. Adv. Water Resour. 2(3), 131–144 (1979). doi:http://dx.doi.org/10.1016/0309-1708(79)90025-3

  35. Hassanizadeh, S., Gray, W.: General conservation equations for multi-phase systems: III. Constitutive theory for porous media flow. Adv. Water Resour. 3(1), 25–40 (1980). doi:http://dx.doi.org/10.1016/0309-1708(80)90016-0

  36. Hassanizadeh, S., Gray, W.: Mechanics and thermodynamics of multiphase flow in porous media including interface boundaries. Adv. Water Resour. 13(4), 169–186 (1990). doi:http://dx.doi.org/10.1016/0309-1708(90)90040-B

  37. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin (1997)

    Book  Google Scholar 

  38. Holzbecher, E.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)

    Book  Google Scholar 

  39. Huyakorn, P., Pinder, G.: Computational Methods in Subsurface Flow. Academic, New York (1983)

    Google Scholar 

  40. Idelsohn, S., Oñate, E.: Finite volumes and finite elements: two ‘good friends’. Int. J. Numer. Methods Eng. 37(19), 3323–3341 (1994)

    Article  Google Scholar 

  41. Ingram, J., Eringen, A.: A continuum theory of chemically reacting media – II constitutive equations of reacting fluid mixtures. Int. J. Eng. Sci. 5(4), 289–322 (1967)

    Article  Google Scholar 

  42. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)

    Article  Google Scholar 

  43. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  44. Kinzelbach, W.: Groundwater Modelling: An Introduction with Sample Programs in BASIC. Elsevier, Amsterdam (1986)

    Google Scholar 

  45. Kolditz, O.: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin (2002)

    Book  Google Scholar 

  46. Lichtner, P.: Continuum formulation of multicomponent-multiphase reactive transport. In: Lichtner, P., et al. (eds.) Reactive Transport in Porous Media. Reviews in Mineralogy, vol. 34, pp. 1–81. Mineralogical Society of America, Washington, DC (1996)

    Google Scholar 

  47. Löhner, R.: Applied CFD Techniques. Wiley, Chichester (2001)

    Google Scholar 

  48. Maidment, D.: Handbook of Hydrology. McGraw-Hill, New York (1993)

    Google Scholar 

  49. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–468 (1973)

    Article  Google Scholar 

  50. Minkowycz, W., Sparrow, E., Murthy, J.: Handbook of Numerical Heat Transfer, 2nd edn. Wiley, Hoboken (2006)

    Google Scholar 

  51. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). Reprinted by J.W. Edwards, Ann Arbor, 1946

    Google Scholar 

  52. Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  53. Pinder, G.: Groundwater Modeling Using Geographical Information Systems. Wiley, New York (2002)

    Google Scholar 

  54. Pinder, G., Gray, W.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken (2008)

    Book  Google Scholar 

  55. Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989)

    Google Scholar 

  56. Polubarinova-Kochina, P.: Theory of Groundwater Movement. Princeton University Press, Princeton (1962)

    Google Scholar 

  57. Reddy, S., Gartling, D.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd edn. CRC, Boca Raton (2001)

    Google Scholar 

  58. Scheidegger, A.: The Physics of Flow Through Porous Media. MacMillan, New York (1957)

    Google Scholar 

  59. Selker, J., Keller, C., McCord, J.: Vadose Zone Processes. Lewis, Boca Raton (1999)

    Google Scholar 

  60. Smith, I., Griffiths, D.: Programming the Finite Element Method, 5th edn. Wiley, Chichester (2004)

    Google Scholar 

  61. Sposito, G., Chu, S.Y.: The statistical mechanical theory of groundwater flow. Water Resour. Res. 17(4), 885–892 (1981). doi:http://dx.doi.org/10.1029/WR017i004p00885

  62. Strack, O.: Groundwater Mechanics. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  63. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973)

    Google Scholar 

  64. Toffoli, T., Margolus, N.: Cellular Automata Machines. MIT, Cambridge (1988)

    Google Scholar 

  65. Truesdell, C.: Rational thermodynamics: a course of lectures on selected topics. McGraw-Hill, New York (1969)

    Google Scholar 

  66. Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor and Francis, Boca Raton (2005)

    Book  Google Scholar 

  67. Verruijt, A.: Theory of Groundwater Flow. MacMillan, London (1970)

    Google Scholar 

  68. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  69. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, Reading (1994)

    Google Scholar 

  70. Yeh, G.T.: Computational Subsurface Hydrology: Fluid Flows. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  71. Yeh, G.T.: Computational Subsurface Hydrology: Reactions, Transport, and Fate. Kluwer Academic, Dordrecht (2000)

    Book  Google Scholar 

  72. Zheng, C., Bennett, G.: Applied Contaminant Transport Modeling: Theory and Practice. Van Nostrand Reinhold, New York (1995)

    Google Scholar 

  73. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  74. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 3: Fluid Dynamics, 5th edn. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diersch, HJ.G. (2014). Introduction. In: FEFLOW. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_1

Download citation

Publish with us

Policies and ethics