Skip to main content

Vasoactive Peptides and the Pathogenesis of Pulmonary Hypertension: Role and Potential Therapeutic Application

  • Chapter
  • First Online:
Pharmacotherapy of Pulmonary Hypertension

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 218))

Abstract

Pulmonary hypertension (PH) is a debilitating disease with a dismal prognosis. Recent advances in therapy (e.g. prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase 5 inhibitors), whilst significantly improving survival, simply delay the inexorable progression of the disease. An array of endogenous vasoconstrictors and vasodilators coordinates to maintain pulmonary vascular homeostasis and morphological integrity, and an imbalance in the expression and function of these mediators precipitates PH and related lung diseases. The vasodilator peptides, including natriuretic peptides, vasoactive intestinal peptide, calcitonin gene-related peptide and adrenomedullin, trigger the production of cyclic nucleotides (e.g. cGMP and cAMP) in many pulmonary cell types, which in tandem exert a multifaceted protection against the pathogenesis of PH, encompassing vasodilatation, inhibition of vascular smooth muscle proliferation, anti-inflammatory and anti-fibrotic effects and salutary actions on the right ventricle. This coordinated beneficial activity underpins a contemporary perception that to advance treatment of PH it is necessary to offset multiple disease mechanisms (i.e. the pulmonary vasoconstriction, pulmonary vascular remodelling, right ventricular dysfunction). Thus, there is considerable potential for harnessing the favourable activity of peptide mediators to offer a novel, efficacious therapeutic approach in PH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abassi ZA, Kotob S, Golomb E, Pieruzzi F, Keiser HR (1995) Pulmonary and renal neutral endopeptidase EC 3.4.24.11 in rats with experimental heart failure. Hypertension 25:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia A, Hobbs AJ (2005) Endothelium-derived C-type natriuretic peptide: more than just a hyperpolarizing factor. Trends Pharmacol Sci 26:162–167

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia A, MacAllister RJ, Hobbs AJ (2004) Vascular actions of natriuretic peptides. Cyclic GMP-dependent and -independent mechanisms. Basic Res Cardiol 99:83–89

    Article  PubMed  CAS  Google Scholar 

  • Aiyar N, Rand K, Elshourbagy NA, Zeng Z, Adamou JE, Bergsma DJ, Li Y (1996) A cDNA encoding the calcitonin gene-related peptide type 1 receptor. J Biol Chem 271:11325–11329

    Article  PubMed  CAS  Google Scholar 

  • Aiyar N, Disa J, Siemens IR, Nambi P (1997) Differential effects of guanine nucleotides on [125I]-hCGRP(8–37) binding to porcine lung and human neuroblastoma cell membranes. Neuropeptides 31:99–103

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    Article  PubMed  CAS  Google Scholar 

  • Anand-Srivastava MB, Sehl PD, Lowe DG (1996) Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein. J Biol Chem 271:19324–19329

    Article  PubMed  CAS  Google Scholar 

  • Ando K, Fujita T (2003) Lessons from the adrenomedullin knockout mouse. Regul Pept 112:185–188

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Rahman MA, Butler GC, Senn BL, Floras JS (1995) Comparison of candoxatril and atrial natriuretic factor in healthy men. Effects on hemodynamics, sympathetic activity, heart rate variability, and endothelin. Hypertension 26:1160–;1166

    Article  PubMed  CAS  Google Scholar 

  • Angus RM, McCallum MJ, Hulks G, Thomson NC (1993) Bronchodilator, cardiovascular, and cyclic guanylyl monophosphate response to high-dose infused atrial natriuretic peptide in asthma. Am Rev Respir Dis 147:1122–1125

    Article  PubMed  CAS  Google Scholar 

  • Asnicar MA, Koster A, Heiman ML, Tinsley F, Smith DP, Galbreath E, Fox N, Ma YL, Blum WF, Hsiung HM (2002) Vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating peptide receptor 2 deficiency in mice results in growth retardation and increased basal metabolic rate. Endocrinology 143:3994–4006

    Article  PubMed  CAS  Google Scholar 

  • Backlund T, Palojoki E, Saraste A, Gronholm T, Eriksson A, Lakkisto P, Vuolteenaho O, Nieminen MS, Voipio-Pulkki LM, Laine M, Tikkanen I (2003) Effect of vasopeptidase inhibitor omapatrilat on cardiomyocyte apoptosis and ventricular remodeling in rat myocardial infarction. Cardiovasc Res 57:727–737

    Article  PubMed  CAS  Google Scholar 

  • Baliga RS, Zhao L, Madhani M, Lopez-Torondel B, Visintin C, Selwood D, Wilkins MR, MacAllister RJ, Hobbs AJ (2008) Synergy between natriuretic peptides and phosphodiesterase 5 inhibitors ameliorates pulmonary arterial hypertension. Am J Respir Crit Care Med 178:861–869

    Article  PubMed  CAS  Google Scholar 

  • Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, Groves BM, Tapson VF, Bourge RC, Brundage BH (1996) A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 334:296–302

    Article  PubMed  CAS  Google Scholar 

  • Barst RJ, Langleben D, Frost A, Horn EM, Oudiz R, Shapiro S, McLaughlin V, Hill N, Tapson VF, Robbins IM, Zwicke D, Duncan B, Dixon RA, Frumkin LR (2004) Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 169:441–447

    Article  PubMed  Google Scholar 

  • Belvisi MG, Miura M, Stretton D, Barnes PJ (1993) Endogenous vasoactive intestinal peptide and nitric oxide modulate cholinergic neurotransmission in guinea-pig trachea. Eur J Pharmacol 231:97–102

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Bennett GL, Vitangcol RV, Jewett JR, Burnier J, Henzel W, Lowe DG (1991) Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. Hormone pharmacology and application to solid phase screening of synthetic peptide antisera. J Biol Chem 266:23060–23067

    PubMed  CAS  Google Scholar 

  • Bevan EG, Connell JM, Doyle J, Carmichael HA, Davies DL, Lorimer AR, McInnes GT (1992) Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J Hypertens 10:607–613

    Article  PubMed  CAS  Google Scholar 

  • Bianchi C, Gutkowska J, Thibault G, Garcia R, Genest J, Cantin M (1985) Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues. Histochemistry 82:441–452

    Article  PubMed  CAS  Google Scholar 

  • Bivalacqua TJ, Hyman AL, Kadowitz PJ, Paolocci N, Kass DA, Champion HC (2002) Role of calcitonin gene-related peptide (CGRP) in chronic hypoxia-induced pulmonary hypertension in the mouse. Influence of gene transfer in vivo. Regul Pept 108:129–133

    Article  PubMed  CAS  Google Scholar 

  • Blais C Jr, Fortin D, Rouleau JL, Molinaro G, Adam A (2000) Protective effect of omapatrilat, a vasopeptidase inhibitor, on the metabolism of bradykinin in normal and failing human hearts. J Pharmacol Exp Ther 295:621–626

    PubMed  CAS  Google Scholar 

  • Borson DB (1991) Roles of neutral endopeptidase in airways. Am J Physiol 260:L212–L225

    PubMed  CAS  Google Scholar 

  • Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56

    Article  PubMed  CAS  Google Scholar 

  • Brum JM, Bove AA, Sufan Q, Reilly W, Go VL (1986) Action and localization of vasoactive intestinal peptide in the coronary circulation: evidence for nonadrenergic, noncholinergic coronary regulation. J Am Coll Cardiol 7:406–413

    Article  PubMed  CAS  Google Scholar 

  • Burrell LM, Droogh J, Mani V, Rockell MD, Farina NK, Johnston CI (2000) Antihypertensive and antihypertrophic effects of omapatrilat in SHR. Am J Hypertens 13:1110–1116

    Article  PubMed  CAS  Google Scholar 

  • Cargill RI, Lipworth BJ (1995a) Pulmonary vasorelaxant activity of atrial natriuretic peptide and brain natriuretic peptide in humans. Thorax 50:183–185

    Article  PubMed  CAS  Google Scholar 

  • Cargill RI, Lipworth BJ (1995b) The role of the renin-angiotensin and natriuretic peptide systems in the pulmonary vasculature. Br J Clin Pharmacol 40:11–18

    Article  PubMed  CAS  Google Scholar 

  • Cargill RI, Lipworth BJ (1996) Atrial natriuretic peptide and brain natriuretic peptide in cor pulmonale. Hemodynamic and endocrine effects. Chest 110:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Carstairs JR, Barnes PJ (1986) Visualization of vasoactive intestinal peptide receptors in human and guinea pig lung. J Pharmacol Exp Ther 239:249–255

    PubMed  CAS  Google Scholar 

  • Champion HC, Bivalacqua TJ, Toyoda K, Heistad DD, Hyman AL, Kadowitz PJ (2000) In vivo gene transfer of prepro-calcitonin gene-related peptide to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse. Circulation 101:923–930

    Article  PubMed  CAS  Google Scholar 

  • Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, Rubin LJ (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358:1119–1123

    Article  PubMed  CAS  Google Scholar 

  • Chattergoon NN, D’Souza FM, Deng W, Chen H, Hyman AL, Kadowitz PJ, Jeter JR Jr (2005) Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 288:L202–L211

    Article  PubMed  CAS  Google Scholar 

  • Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA 100:1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Chen YF (2005) Atrial natriuretic peptide in hypoxia. Peptides 26:1068–1077

    Article  PubMed  CAS  Google Scholar 

  • Chen RY, Guth PH (1995) Interaction of endogenous nitric oxide and CGRP in sensory neuron-induced gastric vasodilation. Am J Physiol 268:G791–G796

    PubMed  CAS  Google Scholar 

  • Chen SJ, Chen YF, Meng QC, Durand J, Dicarlo VS, Oparil S (1995) Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats. J Appl Physiol 79:2122–2131

    PubMed  CAS  Google Scholar 

  • Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S (2006) Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 79:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Christophe J, Waelbroeck M, Chatelain P, Robberecht P (1984) Heart receptors for VIP, PHI and secretin are able to activate adenylate cyclase and to mediate inotropic and chronotropic effects. Species variations and physiopathology. Peptides 5:341–353

    Article  PubMed  CAS  Google Scholar 

  • Chrysant SG, Chrysant GS (2012) Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors. Am J Cardiol 109:1681–1685

    Article  PubMed  CAS  Google Scholar 

  • Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M, Nakao K (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 98:4016–4021

    Article  PubMed  CAS  Google Scholar 

  • Cohen AJ, King TE Jr, Gilman LB, Magill-Solc C, Miller YE (1998) High expression of neutral endopeptidase in idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells. Am J Respir Crit Care Med 158:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285:R939–R949

    PubMed  CAS  Google Scholar 

  • Dani C, Pavoni V, Corsini I, Longini M, Gori G, Giannesello L, Perna A, Gritti G, Paternostro F, Forestieri A, Buonocore G, Rubaltelli FF (2007) Inhaled nitric oxide combined with prostacyclin and adrenomedullin in acute respiratory failure with pulmonary hypertension in piglets. Pediatr Pulmonol 42:1048–1056

    Article  PubMed  Google Scholar 

  • Das S, Au E, Krazit ST, Pandey KN (2010) Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology 151:5841–5850

    Article  PubMed  CAS  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    Article  PubMed  Google Scholar 

  • Della NG, Papka RE, Furness JB, Costa M (1983) Vasoactive intestinal peptide-like immunoreactivity in nerves associated with the cardiovascular system of guinea-pigs. Neuroscience 9:605–619

    Article  PubMed  CAS  Google Scholar 

  • Desbuquois B, Laudat MH, Laudat P (1973) Vasoactive intestinal polypeptide and glucagon: stimulation of adenylate cyclase activity via distinct receptors in liver and fat cell membranes. Biochem Biophys Res Commun 53:1187–1194

    Article  Google Scholar 

  • Dey RD, Shannon WA Jr, Said SI (1981) Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell Tissue Res 220:231–238

    PubMed  CAS  Google Scholar 

  • Dickey DM, Flora DR, Bryan PM, Xu X, Chen Y, Potter LR (2007) Differential regulation of membrane guanylyl cyclases in congestive heart failure: NPR-B, Not NPR-A, is the predominant natriuretic peptide receptor in the failing heart. Endocrinology 148(7):3518–3522

    Article  PubMed  CAS  Google Scholar 

  • Dickson L, Aramori I, Sharkey J, Finlayson K (2006) VIP and PACAP receptor pharmacology: a comparison of intracellular signaling pathways. Ann NY Acad Sci 1070:239–242

    Article  PubMed  CAS  Google Scholar 

  • Dschietzig T, Richter C, Asswad L, Baumann G, Stangl K (2007) Hypoxic induction of receptor activity-modifying protein 2 alters regulation of pulmonary endothelin-1 by adrenomedullin: induction under normoxia versus inhibition under hypoxia. J Pharmacol Exp Ther 321:409–419

    Article  PubMed  CAS  Google Scholar 

  • Dubois SK, Kishimoto I, Lillis TO, Garbers DL (2000) A genetic model defines the importance of the atrial natriuretic peptide receptor (guanylyl cyclase-A) in the regulation of kidney function. Proc Natl Acad Sci USA 97:4369–4373

    Article  PubMed  CAS  Google Scholar 

  • Ellmers LJ, Scott NJA, Piuhola J, Maeda N, Smithies O, Frampton CM, Richards AM, Cameron VA (2007) Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J Mol Endocrinol 38:245–257

    Article  PubMed  CAS  Google Scholar 

  • Erdos EG, Skidgel RA (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 3:145–151

    PubMed  CAS  Google Scholar 

  • Evgenov OV, Zou L, Zhang M, Mino-Kenudsen M, Mark EJ, Buys ES, Li Y, Feng Y, Raher MJ, Stasch JP, Chao W (2011) Stimulation of soluble guanylate cyclase attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 183:A2715

    Google Scholar 

  • Fahrenkrug J, Hannibal J (2004) Neurotransmitters co-existing with VIP or PACAP. Peptides 25:393–401

    Article  PubMed  CAS  Google Scholar 

  • Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK (2009) Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 179:1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Frase LL, Gaffney FA, Lane LD, Buckey JC, Said SI, Blomqvist CG, Krejs GJ (1987) Cardiovascular effects of vasoactive intestinal peptide in healthy subjects. Am J Cardiol 60:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM (1999) The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 55:1054–1059

    PubMed  CAS  Google Scholar 

  • Galie N, Badesch D, Oudiz R, Simonneau G, McGoon MD, Keogh AM, Frost AE, Zwicke D, Naeije R, Shapiro S, Olschewski H, Rubin LJ (2005a) Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol 46:529–535

    Article  PubMed  CAS  Google Scholar 

  • Galie N, Boonstra A, Ewert R, Gomez-Sanchez MA, Barbera JA, Torbicki A, Bremer H, Ghofrani HA, Naeije R, Gruenig E, Leuchte H, Simonneau G, Klose H, Peacock AJ, Wilkens H, Bevec D, Cavalli V, Bacher G, Rubin LJ (2010) Effects of inhaled aviptadil (vasoactive intestinal peptide) in patients with pulmonary arterial hypertension (PAH). Am J Respir Crit Care Med 181:A2516

    Google Scholar 

  • Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005b) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Graf K, Koehne P, Grafe M, Zhang M, Auch-Schwelk W, Fleck E (1995) Regulation and differential expression of neutral endopeptidase 24.11 in human endothelial cells. Hypertension 26:230–235

    Article  PubMed  CAS  Google Scholar 

  • Grantham JA, Schirger JA, Wennberg PW, Sandberg S, Heublein DM, Subkowski T, Burnett JC Jr (2000) Modulation of functionally active endothelin-converting enzyme by chronic neutral endopeptidase inhibition in experimental atherosclerosis. Circulation 101:1976–1981

    Article  PubMed  CAS  Google Scholar 

  • Gray SL, Yamaguchi N, Vencova P, Sherwood NM (2002) Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 143:3946–3954

    Article  PubMed  CAS  Google Scholar 

  • Groneberg DA, Rabe KF, Fischer A (2006) Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 533:182–194

    Article  PubMed  CAS  Google Scholar 

  • Guan CX, Zhang M, Qin XQ, Cui YR, Luo ZQ, Bai HB, Fang X (2006) Vasoactive intestinal peptide enhances wound healing and proliferation of human bronchial epithelial cells. Peptides 27:3107–3114

    Article  PubMed  CAS  Google Scholar 

  • Gunaydin S, Imai Y, Takanashi Y, Seo K, Hagino I, Chang D, Shinoka T (2002) The effects of vasoactive intestinal peptide on monocrotaline induced pulmonary hypertensive rabbits following cardiopulmonary bypass: a comparative study with isoproteronol and nitroglycerine. Cardiovasc Surg 10:138–145

    Article  PubMed  Google Scholar 

  • Gutkowska J, Nemer M (1989) Structure, expression, and function of atrial natriuretic factor in extraatrial tissues. Endocr Rev 10:519–536

    Article  PubMed  CAS  Google Scholar 

  • Gutkowska J, Cantin M, Genest J, Sirois P (1987) Release of immunoreactive atrial natriuretic factor from the isolated perfused rat lung. FEBS Lett 214:17–20

    Article  PubMed  CAS  Google Scholar 

  • Hamidi SA, Lin RZ, Szema AM, Lyubsky S, Jiang YP, Said SI (2011) VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension. Respir Res 12:141

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Sheward WJ, Morrison CF, Waser B, Gugger M, Reubi JC (2004) Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology 145:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S (1993) Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 11:333–342

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, Sakaue M, Miyazaki J, Niwa H, Tashiro F, Yamamoto K, Koga K, Tomimoto S, Kunugi A, Suetake S, Baba A (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci USA 98:13355–13360

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Amaya F, Oh-Hashi K, Kiuchi K, Hashimoto S (2010) Expression of neutral endopeptidase activity during clinical and experimental acute lung injury. Respir Res 11:164

    PubMed  CAS  Google Scholar 

  • Haydar S, Sarti JF, Grisoni ER (2007) Intravenous vasoactive intestinal polypeptide lowers pulmonary-to-systemic vascular resistance ratio in a neonatal piglet model of pulmonary arterial hypertension. J Pediatr Surg 42:758–764

    Article  PubMed  Google Scholar 

  • Heaton J, Lin B, Chang JK, Steinberg S, Hyman A, Lippton H (1995) Pulmonary vasodilation to adrenomedullin: a novel peptide in humans. Am J Physiol 268:H2211–H2215

    PubMed  CAS  Google Scholar 

  • Hegde LG, Yu C, Renner T, Thibodeaux H, Armstrong SR, Park T, Cheruvu M, Olsufka R, Sandvik ER, Lane CE, Budman J, Hill CM, Klein U, Hegde SS (2011) Concomitant angiotensin AT1 receptor antagonism and neprilysin inhibition produces omapatrilat-like antihypertensive effects without promoting tracheal plasma extravasation in the rat. J Cardiovasc Pharmacol 57:495–504

    Article  PubMed  CAS  Google Scholar 

  • Henning RJ, Sawmiller DR (2001) Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49:27–37

    Article  PubMed  CAS  Google Scholar 

  • Hill NS, Klinger JR, Warburton RR, Pietras L, Wrenn DS (1994) Brain natriuretic peptide: possible role in the modulation of hypoxic pulmonary hypertension. Am J Physiol 266:L308–L315

    PubMed  CAS  Google Scholar 

  • Hobbs AJ (1997) Soluble guanylate cyclase: the forgotten sibling. Trends Pharmacol Sci 18:484–491

    PubMed  CAS  Google Scholar 

  • Hobbs A, Foster P, Prescott C, Scotland R, Ahluwalia A (2004) Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation 110:1231–1235

    Article  PubMed  CAS  Google Scholar 

  • Holtwick R, van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407

    PubMed  CAS  Google Scholar 

  • Hosoya M, Kimura C, Ogi K, Ohkubo S, Miyamoto Y, Kugoh H, Shimizu M, Onda H, Oshimura M, Arimura A (1992) Structure of the human pituitary adenylate cyclase activating polypeptide (PACAP) gene. Biochim Biophys Acta 1129:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hosoya M, Onda H, Ogi K, Masuda Y, Miyamoto Y, Ohtaki T, Okazaki H, Arimura A, Fujino M (1993) Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 194:133–143

    Article  PubMed  CAS  Google Scholar 

  • Hulks G, Jardine AG, Connell JM, Thomson NC (1990) Effect of atrial natriuretic factor on bronchomotor tone in the normal human airway. Clin Sci (Lond) 79:51–55

    CAS  Google Scholar 

  • Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Ichiki Y, Kitamura K, Kangawa K, Kawamoto M, Matsuo H, Eto T (1994) Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma. FEBS Lett 338:6–10

    Article  PubMed  CAS  Google Scholar 

  • Iglarz M, Binkert C, Morrison K, Fischli W, Gatfield J, Treiber A, Weller T, Bolli MH, Boss C, Buchmann S, Capeleto B, Hess P, Qiu C, Clozel M (2008) Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J Pharmacol Exp Ther 327:736–745

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Yoshida H, Mizuta M, Mizuno N, Fujii Y, Gonoi T, Miyazaki J, Seino S (1994) Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells. Proc Natl Acad Sci USA 91:2679–2683

    Article  PubMed  CAS  Google Scholar 

  • Irwin DC, Patot MT, Tucker A, Bowen R (2005) Neutral endopeptidase null mice are less susceptible to high altitude-induced pulmonary vascular leak. High Alt Med Biol 6:311–319

    Article  PubMed  CAS  Google Scholar 

  • Ishigaki N, Yamamoto N, Jin H, Uchida K, Terai S, Sakaida I (2009) Continuos intravenous infusion of atrial natriuretic peptide (ANP) prevented liver fibrosis in rat. Biochem Biophys Res Commun 378:354–359

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10:1635–1641

    PubMed  CAS  Google Scholar 

  • Ishimitsu T, Nishikimi T, Saito Y, Kitamura K, Eto T, Kangawa K, Matsuo H, Omae T, Matsuoka H (1994) Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J Clin Invest 94:2158–2161

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Obata K, Yanaihara N, Okamoto H (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Parker TA, Ziegler JW, Galan HL, Kinsella JP, Tuder RM, Abman SH (1997) Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus. J Clin Invest 99:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Janssen PL, Tucker A (1994) Calcitonin gene-related peptide modulates pulmonary vascular reactivity in isolated rat lungs. J Appl Physiol 77:142–146

    PubMed  CAS  Google Scholar 

  • Jin HK, Yang RH, Chen YF, Jackson RM, Oparil S (1988) Chronic infusion of atrial natriuretic peptide prevents pulmonary hypertension in hypoxia-adapted rats. Trans Assoc Am Physicians 101:185–192

    PubMed  CAS  Google Scholar 

  • Jin H, Yang RH, Chen YF, Jackson RM, Oparil S (1990) Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia. J Clin Invest 85:115–120

    Article  PubMed  CAS  Google Scholar 

  • Johnson MC, McCormack RJ, Delgado M, Martinez C, Ganea D (1996) Murine T-lymphocytes express vasoactive intestinal peptide receptor 1 (VIP-R1) mRNA. J Neuroimmunol 68:109–119

    Article  PubMed  CAS  Google Scholar 

  • Kakishita M, Nishikimi T, Okano Y, Satoh T, Kyotani S, Nagaya N, Fukushima K, Nakanishi N, Takishita S, Miyata A, Kangawa K, Matsuo H, Kunieda T (1999) Increased plasma levels of adrenomedullin in patients with pulmonary hypertension. Clin Sci (Lond) 96:33–39

    Article  CAS  Google Scholar 

  • Kalk P, Godes M, Relle K, Rothkegel C, Hucke A, Stasch JP, Hocher B (2006) NO-independent activation of soluble guanylate cyclase prevents disease progression in rats with 5/6 nephrectomy. Br J Pharmacol 148:853–859

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa H, Okamoto T, Hirata K, Yoshikawa J (2000) Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Kandler MA, von der Hardt K, Mahfoud S, Chada M, Schoof E, Papadopoulos T, Rascher W, Dotsch J (2003) Pilot intervention: aerosolized adrenomedullin reduces pulmonary hypertension. J Pharmacol Exp Ther 306:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Kato I, Suzuki Y, Akabane A, Yonekura H, Tanaka O, Kondo H, Takasawa S, Yoshimoto T, Okamoto H (1994) Transgenic mice overexpressing human vasoactive intestinal peptide (VIP) gene in pancreatic beta cells. Evidence for improved glucose tolerance and enhanced insulin secretion by VIP and PHM-27 in vivo. J Biol Chem 269:21223–21228

    PubMed  CAS  Google Scholar 

  • Keith IM (2000) The role of endogenous lung neuropeptides in regulation of the pulmonary circulation. Physiol Res 49:519–537

    PubMed  CAS  Google Scholar 

  • Keith IM, Ekman R (1992) Dynamic aspects of regulatory lung peptides in chronic hypoxic pulmonary hypertension. Exp Lung Res 18:205–224

    Article  PubMed  CAS  Google Scholar 

  • Keith IM, Tjen AL, Kraiczi H, Ekman R (2000) Three-week neonatal hypoxia reduces blood CGRP and causes persistent pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 279:H1571–H1578

    PubMed  CAS  Google Scholar 

  • Kishimoto I, Dubois SK, Garbers DL (1996) The heart communicates with the kidney exclusively through the guanylyl cyclase-A receptor: acute handling of sodium and water in response to volume expansion. Proc Natl Acad Sci USA 93:6215–6219

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto I, Tokudome T, Horio T, Garbers DL, Nakao K, Kangawa K (2009) Natriuretic peptide signaling via guanylyl cyclase (GC)-A: an endogenous protective mechanism of the heart. Curr Cardiol Rev 5:45–51

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560

    Article  PubMed  CAS  Google Scholar 

  • Klapholz M, Thomas I, Eng C, Iteld BJ, Ponce GA, Niederman AL, Bilsker M, Heywood JT, Synhorst D (2001) Effects of omapatrilat on hemodynamics and safety in patients with heart failure. Am J Cardiol 88:657–661

    Article  PubMed  CAS  Google Scholar 

  • Klinger JR, Petit RD, Warburton RR, Wrenn DS, Arnal F, Hill NS (1993) Neutral endopeptidase inhibition attenuates development of hypoxic pulmonary hypertension in rats. J Appl Physiol 75:1615–1623

    PubMed  CAS  Google Scholar 

  • Klinger JR, Warburton RR, Pietras LA, Smithies O, Swift R, Hill NS (1999) Genetic disruption of atrial natriuretic peptide causes pulmonary hypertension in normoxic and hypoxic mice. Am J Physiol 276:L868–L874

    PubMed  CAS  Google Scholar 

  • Klinger JR, Warburton RR, Pietras L, Oliver P, Fox J, Smithies O, Hill NS (2002) Targeted disruption of the gene for natriuretic peptide receptor-A worsens hypoxia-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 282:H58–H65

    PubMed  CAS  Google Scholar 

  • Klinger JR, Houtchens J, Thaker S, Hill NS, Farber H (2005) Acute cardiopulmonary hemodynamic effects of brain natriuretic peptide in patients with pulmonary arterial hypertension. Chest 128:618S–619S

    Article  PubMed  Google Scholar 

  • Klinger JR, Thaker S, Houtchens J, Preston IR, Hill NS, Farber HW (2006) Pulmonary hemodynamic responses to brain natriuretic peptide and sildenafil in patients with pulmonary arterial hypertension. Chest 129:417–425

    Article  PubMed  CAS  Google Scholar 

  • Klinger JR, Warburton RR, Pietras L, Hill NS (1998) Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats. J Appl Physiol 84:1646–1652

    PubMed  CAS  Google Scholar 

  • Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984

    Article  PubMed  CAS  Google Scholar 

  • Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252:120–123

    Article  PubMed  CAS  Google Scholar 

  • Kralios AC, Anderson FL, Kralios FA (1990) Myocardial electrophysiological effects of vasoactive intestinal peptide in dogs. Am J Physiol 259:H1559–H1565

    PubMed  CAS  Google Scholar 

  • Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E (2002) Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 87:368–374

    Article  PubMed  CAS  Google Scholar 

  • Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA 103:4735–4740

    Article  PubMed  CAS  Google Scholar 

  • Larsson LI, Fahrenkrug J, de Schaffalitzky MO, Sundler F, Hakanson R, Rehfeld JR (1976) Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci USA 73:3197–3200

    Article  PubMed  CAS  Google Scholar 

  • Laurent S, Boutouyrie P, Azizi M, Marie C, Gros C, Schwartz JC, Lecomte JM, Bralet J (2000) Antihypertensive effects of fasidotril, a dual inhibitor of neprilysin and angiotensin-converting enzyme, in rats and humans. Hypertension 35:1148–1153

    Article  PubMed  CAS  Google Scholar 

  • Leceta J, Gomariz RP, Martinez C, Abad C, Ganea D, Delgado M (2000) Receptors and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP. Ann NY Acad Sci 921:92–102

    Article  PubMed  CAS  Google Scholar 

  • Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, Behr J (2008) Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J 32:1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Li P, Oparil S, Novak L, Cao X, Shi W, Lucas J, Chen YF (2007) ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J Appl Physiol 102:390–398

    Article  PubMed  CAS  Google Scholar 

  • Li XW, Hu CP, Wu WH, Zhang WF, Zou XZ, Li YJ (2012) Inhibitory effect of calcitonin gene-related peptide on hypoxia-induced rat pulmonary artery smooth muscle cells proliferation: role of ERK1/2 and p27. Eur J Pharmacol 679:117–126

    Article  PubMed  CAS  Google Scholar 

  • Linden A, Cardell LO, Yoshihara S, Nadel JA (1999) Bronchodilation by pituitary adenylate cyclase-activating peptide and related peptides. Eur Respir J 14:443–451

    Article  PubMed  CAS  Google Scholar 

  • Linden A, Hansson L, Andersson A, Palmqvist M, Arvidsson P, Lofdahl CG, Larsson P, Lotvall J (2003) Bronchodilation by an inhaled VPAC(2) receptor agonist in patients with stable asthma. Thorax 58:217–221

    Article  PubMed  CAS  Google Scholar 

  • Lippton H, Chang JK, Hao Q, Summer W, Hyman AL (1994) Adrenomedullin dilates the pulmonary vascular bed in vivo. J Appl Physiol 76:2154–2156

    PubMed  CAS  Google Scholar 

  • Liu LS, Cheng HY, Chin WJ, Jin HK, Oparil S (1989) Atrial natriuretic peptide lowers pulmonary arterial pressure in patients with high altitude disease. Am J Med Sci 298:397–401

    Article  PubMed  CAS  Google Scholar 

  • Llorens-Cortes C, Huang H, Vicart P, Gasc JM, Paulin D, Corvol P (1992) Identification and characterization of neutral endopeptidase in endothelial cells from venous or arterial origins. J Biol Chem 267:14012–14018

    PubMed  CAS  Google Scholar 

  • Lopez MJ, Garbers DL, Kuhn M (1997) The guanylyl cyclase-deficient mouse defines differential pathways of natriuretic peptide signaling. J Biol Chem 272:23064–23068

    Article  PubMed  CAS  Google Scholar 

  • Louzier V, Eddahibi S, Raffestin B, Deprez I, Adam M, Levame M, Eloit M, Adnot S (2001) Adenovirus-mediated atrial natriuretic protein expression in the lung protects rats from hypoxia-induced pulmonary hypertension. Hum Gene Ther 12:503–513

    Article  PubMed  CAS  Google Scholar 

  • Lumsden NG, Khambata RS, Hobbs AJ (2010) C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des 16:4080–4088

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Fahrenkrug J, Hokfelt T, Martling CR, Larsson O, Tatemoto K, Anggard A (1984) Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides 5:593–606

    Article  PubMed  CAS  Google Scholar 

  • Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ (1993) The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett 334:3–8

    Article  PubMed  CAS  Google Scholar 

  • Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role of silent receptors of atrial natriuretic factor. Science 238:675–678

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi T, Shintani N, Matsumura S, Okuda-Ashitaka E, Hashimoto H, Muratani T, Minami T, Baba A, Ito S (2004) Pituitary adenylate cyclase-activating polypeptide is required for the development of spinal sensitization and induction of neuropathic pain. J Neurosci 24:7283–7291

    Article  PubMed  CAS  Google Scholar 

  • Majid DS, Kadowitz PJ, Coy DH, Navar LG (1996) Renal responses to intra-arterial administration of adrenomedullin in dogs. Am J Physiol 270:F200–F205

    PubMed  CAS  Google Scholar 

  • Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, Asada Y, Stasch JP, Kitamura K (2009) Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res 32:597–603

    Article  PubMed  CAS  Google Scholar 

  • Matera MG, Calzetta L, Passeri D, Facciolo F, Rendina EA, Page C, Cazzola M, Orlandi A (2011) Epithelium integrity is crucial for the relaxant activity of brain natriuretic peptide in human isolated bronchi. Br J Pharmacol 163:1740–1754

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Shimosawa T, Itakura K, Guanqun X, Ando K, Fujita T (2004) Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Circulation 109:2246–2251

    Article  PubMed  CAS  Google Scholar 

  • McClean DR, Ikram H, Garlick AH, Crozier IG (2001) Effects of omapatrilat on systemic arterial function in patients with chronic heart failure. Am J Cardiol 87:565–569

    Article  PubMed  CAS  Google Scholar 

  • McClean DR, Ikram H, Mehta S, Heywood JT, Rousseau MF, Niederman AL, Sequeira RF, Fleck E, Singh SN, Coutu B, Hanrath P, Komajda M, Bryson CC, Qian C, Hanyok JJ (2002) Vasopeptidase inhibition with omapatrilat in chronic heart failure: acute and long-term hemodynamic and neurohumoral effects. J Am Coll Cardiol 39:2034–2041

    Article  PubMed  CAS  Google Scholar 

  • McCormack DG, Mak JC, Coupe MO, Barnes PJ (1989) Calcitonin gene-related peptide vasodilation of human pulmonary vessels. J Appl Physiol 67:1265–1270

    PubMed  CAS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009a) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619

    Article  PubMed  Google Scholar 

  • McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, Harrington RA, Anderson JL, Bates ER, Bridges CR, Eisenberg MJ, Ferrari VA, Grines CL, Hlatky MA, Jacobs AK, Kaul S, Lichtenberg RC, Lindner JR, Moliterno DJ, Mukherjee D, Pohost GM, Rosenson RS, Schofield RS, Shubrooks SJ, Stein JH, Tracy CM, Weitz HH, Wesley DJ (2009b) ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 119:2250–2294

    Article  PubMed  Google Scholar 

  • Misaka S, Aoki Y, Karaki S, Kuwahara A, Mizumoto T, Onoue S, Yamada S (2010) Inhalable powder formulation of a stabilized vasoactive intestinal peptide (VIP) derivative: anti-inflammatory effect in experimental asthmatic rats. Peptides 31:72–78

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra SS, Lockey RF, Vesely DL, Gower WR Jr (2004) Natriuretic peptides and genesis of asthma: an emerging paradigm? J Allergy Clin Immunol 114:520–526

    Article  PubMed  CAS  Google Scholar 

  • Morice A, Unwin RJ, Sever PS (1983) Vasoactive intestinal peptide causes bronchodilatation and protects against histamine-induced bronchoconstriction in asthmatic subjects. Lancet 2:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW, Morris KG, Stenmark KR (1995) Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol 269:H1186–H1194

    PubMed  CAS  Google Scholar 

  • Morrow JA, Lutz EM, West KM, Fink G, Harmar AJ (1993) Molecular cloning and expression of a cDNA encoding a receptor for pituitary adenylate cyclase activating polypeptide (PACAP). FEBS Lett 329:99–105

    Article  PubMed  CAS  Google Scholar 

  • Motte S, McEntee K, Naeije R (2006) Endothelin receptor antagonists. Pharmacol Ther 110:386–414

    Article  PubMed  CAS  Google Scholar 

  • Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA, Kanse S, Amara SG, Burrin JM, Legon S (1988) Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience 25:195–205

    Article  PubMed  CAS  Google Scholar 

  • Murphy LJ, Corder R, Mallet AI, Turner AJ (1994) Generation by the phosphoramidon-sensitive peptidases, endopeptidase-24.11 and thermolysin, of endothelin-1 and c-terminal fragment from big endothelin-1. Br J Pharmacol 113:137–142

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM (1994) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide-dependent activation of membrane-bound NO synthase in smooth muscle mediated by pertussis toxin-sensitive Gi1-2. J Biol Chem 269:15977–15980

    PubMed  CAS  Google Scholar 

  • Nagaya N, Nishikimi T, Uematsu M, Satoh T, Oya H, Kyotani S, Sakamaki F, Ueno K, Nakanishi N, Miyatake K, Kangawa K (2000a) Haemodynamic and hormonal effects of adrenomedullin in patients with pulmonary hypertension. Heart 84:653–658

    Article  PubMed  CAS  Google Scholar 

  • Nagaya N, Satoh T, Nishikimi T, Uematsu M, Furuichi S, Sakamaki F, Oya H, Kyotani S, Nakanishi N, Goto Y, Masuda Y, Miyatake K, Kangawa K (2000b) Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation 101:498–503

    Article  PubMed  CAS  Google Scholar 

  • Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003a) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108:889–895

    Article  PubMed  CAS  Google Scholar 

  • Nagaya N, Miyatake K, Kyotani S, Nishikimi T, Nakanishi N, Kangawa K (2003b) Pulmonary vasodilator response to adrenomedullin in patients with pulmonary hypertension. Hypertens Res 26(Suppl):S141–S146

    Article  PubMed  CAS  Google Scholar 

  • Nagaya N, Okumura H, Uematsu M, Shimizu W, Ono F, Shirai M, Mori H, Miyatake K, Kangawa K (2003c) Repeated inhalation of adrenomedullin ameliorates pulmonary hypertension and survival in monocrotaline rats. Am J Physiol Heart Circ Physiol 285:H2125–H2131

    PubMed  CAS  Google Scholar 

  • Nagaya N, Kyotani S, Uematsu M, Ueno K, Oya H, Nakanishi N, Shirai M, Mori H, Miyatake K, Kangawa K (2004) Effects of adrenomedullin inhalation on hemodynamics and exercise capacity in patients with idiopathic pulmonary arterial hypertension. Circulation 109:351–356

    Article  PubMed  Google Scholar 

  • Nakamura M, Yoshida H, Makita S, Arakawa N, Niinuma H, Hiramori K (1997) Potent and long-lasting vasodilatory effects of adrenomedullin in humans. Comparisons between normal subjects and patients with chronic heart failure. Circulation 95:1214–1221

    Article  PubMed  CAS  Google Scholar 

  • Nandiwada PA, Kadowitz PJ, Said SI, Mojarad M, Hyman AL (1985) Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat. J Appl Physiol 58:1723–1728

    PubMed  CAS  Google Scholar 

  • Nanke Y, Kotake S, Akama H, Shimamoto K, Hara M, Kamatani N (2000) Raised plasma adrenomedullin patients with systemic sclerosis complicated by pulmonary hypertension. Ann Rheum Dis 59:493–494

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi T, Saito Y, Kitamura K, Ishimitsu T, Eto T, Kangawa K, Matsuo H, Omae T, Matsuoka H (1995) Increased plasma levels of adrenomedullin in patients with heart failure. J Am Coll Cardiol 26:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi T, Nagata S, Sasaki T, Tomimoto S, Matsuoka H, Takishita S, Kitamura K, Miyata A, Matsuo H, Kangawa K (1997) Plasma concentrations of adrenomedullin correlate with the extent of pulmonary hypertension in patients with mitral stenosis. Heart 78:390–395

    PubMed  CAS  Google Scholar 

  • Nishikimi T, Horio T, Yoshihara F, Nagaya N, Matsuo H, Kangawa K (1998) Effect of adrenomedullin on cAMP and cGMP levels in rat cardiac myocytes and nonmyocytes. Eur J Pharmacol 353:337–344

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi T, Inaba-Iemura C, Ishimura K, Tadokoro K, Koshikawa S, Ishikawa K, Akimoto K, Hattori Y, Kasai K, Minamino N, Maeda N, Matsuoka H (2009) Natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system has inhibitory effects in renal fibrosis in mice. Regul Pept 154:44–53

    Article  PubMed  CAS  Google Scholar 

  • Nong Z, Stassen JM, Moons L, Collen D, Janssens S (1996) Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation 94:1941–1947

    Article  PubMed  CAS  Google Scholar 

  • Nossaman BD, Feng CJ, Kaye AD, DeWitt B, Coy DH, Murphy WA, Kadowitz PJ (1996) Pulmonary vasodilator responses to adrenomedullin are reduced by NOS inhibitors in rats but not in cats. Am J Physiol 270:L782–L789

    PubMed  CAS  Google Scholar 

  • O'Connell JE, Jardine AG, Davidson G, Connell JM (1992) Candoxatril, an orally active neutral endopeptidase inhibitor, raises plasma atrial natriuretic factor and is natriuretic in essential hypertension. J Hypertens 10:271–277

    Article  PubMed  Google Scholar 

  • O’Dorisio MS, Shannon BT, Fleshman DJ, Campolito LB (1989) Identification of high affinity receptors for vasoactive intestinal peptide on human lymphocytes of B cell lineage. J Immunol 142:3533–3536

    PubMed  Google Scholar 

  • Ogi K, Miyamoto Y, Masuda Y, Habata Y, Hosoya M, Ohtaki T, Masuo Y, Onda H, Fujino M (1993) Molecular cloning and functional expression of a cDNA encoding a human pituitary adenylate cyclase activating polypeptide receptor. Biochem Biophys Res Commun 196:1511–1521

    Article  PubMed  CAS  Google Scholar 

  • Ogihara T, Rakugi H, Masuo K, Yu H, Nagano M, Mikami H (1994) Antihypertensive effects of the neutral endopeptidase inhibitor SCH 42495 in essential hypertension. Am J Hypertens 7:943–947

    PubMed  CAS  Google Scholar 

  • Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    Article  PubMed  CAS  Google Scholar 

  • Onoue S, Ohmori Y, Endo K, Yamada S, Kimura R, Yajima T (2004) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide attenuate the cigarette smoke extract-induced apoptotic death of rat alveolar L2 cells. Eur J Biochem 271:1757–1767

    Article  PubMed  CAS  Google Scholar 

  • Otto C, Hein L, Brede M, Jahns R, Engelhardt S, Grone HJ, Schutz G (2004) Pulmonary hypertension and right heart failure in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Circulation 110:3245–3251

    Article  PubMed  CAS  Google Scholar 

  • Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau JL, Swedberg K (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 106:920–926

    Article  PubMed  CAS  Google Scholar 

  • Pagel-Langenickel I, Buttgereit J, Bader M, Langenickel TH (2007) Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med (Berl) 85(8):797–810

    Article  CAS  Google Scholar 

  • Palmer JB, Cuss FM, Barnes PJ (1986) VIP and PHM and their role in nonadrenergic inhibitory responses in isolated human airways. J Appl Physiol 61:1322–1328

    PubMed  CAS  Google Scholar 

  • Pandey KN, Oliver PM, Maeda N, Smithies O (1999) Hypertension associated with decreased testosterone levels in natriuretic peptide receptor-A gene-knockout and gene-duplicated mutant mouse models. Endocrinology 140:5112–5119

    Article  PubMed  CAS  Google Scholar 

  • Perreault T, Gutkowska J (1995) Role of atrial natriuretic factor in lung physiology and pathology. Am J Respir Crit Care Med 151:226–242

    Article  PubMed  CAS  Google Scholar 

  • Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, Funk GC, Hamilton G, Novotny C, Burian B, Block LH (2003) Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest 111:1339–1346

    PubMed  CAS  Google Scholar 

  • Pisegna JR, Wank SA (1993) Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci USA 90:6345–6349

    Article  PubMed  CAS  Google Scholar 

  • Popma JJ, Smitherman TC, Bedotto JB, Eichhorn EJ, Said SI, Dehmer GJ (1990) Direct coronary vasodilation induced by intracoronary vasoactive intestinal peptide. J Cardiovasc Pharmacol 16:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Potter LR (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 130:71–82

    Article  PubMed  CAS  Google Scholar 

  • Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    Article  PubMed  CAS  Google Scholar 

  • Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol: 341–366

    Google Scholar 

  • Qing X, Keith IM (2003) Targeted blocking of gene expression for CGRP receptors elevates pulmonary artery pressure in hypoxic rats. Am J Physiol Lung Cell Mol Physiol 285:L86–L96

    PubMed  CAS  Google Scholar 

  • Qing X, Wimalawansa SJ, Keith IM (2003) Specific N-terminal CGRP fragments mitigate chronic hypoxic pulmonary hypertension in rats. Regul Pept 110:93–99

    Article  PubMed  CAS  Google Scholar 

  • Qvigstad E, Moltzau LR, Aronsen JM, Nguyen CH, Hougen K, Sjaastad I, Levy FO, Skomedal T, Osnes JB (2010) Natriuretic peptides increase beta1-adrenoceptor signalling in failing hearts through phosphodiesterase 3 inhibition. Cardiovasc Res 85:763–772

    Article  PubMed  CAS  Google Scholar 

  • Rademaker MT, Charles CJ, Lewis LK, Yandle TG, Cooper GJ, Coy DH, Richards AM, Nicholls MG (1997) Beneficial hemodynamic and renal effects of adrenomedullin in an ovine model of heart failure. Circulation 96:1983–1990

    Article  PubMed  CAS  Google Scholar 

  • Raffestin B, Levame M, Eddahibi S, Viossat I, Braquet P, Chabrier PE, Cantin M, Adnot S (1992) Pulmonary vasodilatory action of endogenous atrial natriuretic factor in rats with hypoxic pulmonary hypertension. Effects of monoclonal atrial natriuretic factor antibody. Circ Res 70:184–192

    Article  PubMed  CAS  Google Scholar 

  • Raizada V, Luo W, Skipper BJ, McGuire PG (2002) Intracardiac expression of neutral endopeptidase. Mol Cell Biochem 232:129–131

    Article  PubMed  CAS  Google Scholar 

  • Raja SG (2010) Macitentan, a tissue-targeting endothelin receptor antagonist for the potential oral treatment of pulmonary arterial hypertension and idiopathic pulmonary fibrosis. Curr Opin Investig Drugs 11:1066–1073

    PubMed  CAS  Google Scholar 

  • Reubi JC (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann NY Acad Sci 921:1–25

    Article  PubMed  CAS  Google Scholar 

  • Richards AM, Wittert G, Espiner EA, Yandle TG, Frampton C, Ikram H (1991) Prolonged inhibition of endopeptidase 24.11 in normal man: renal, endocrine and haemodynamic effects. J Hypertens 9:955–962

    Article  PubMed  CAS  Google Scholar 

  • Richards AM, Crozier IG, Espiner EA, Ikram H, Yandle TG, Kosoglou T, Rallings M, Frampton C (1992) Acute inhibition of endopeptidase 24.11 in essential hypertension: SCH 34826 enhances atrial natriuretic peptide and natriuresis without lowering blood pressure. J Cardiovasc Pharmacol 20:735–741

    PubMed  CAS  Google Scholar 

  • Richards AM, Wittert GA, Crozier IG, Espiner EA, Yandle TG, Ikram H, Frampton C (1993) Chronic inhibition of endopeptidase 24.11 in essential hypertension: evidence for enhanced atrial natriuretic peptide and angiotensin II. J Hypertens 11:407–416

    Article  PubMed  CAS  Google Scholar 

  • Roques BP (1998) Cell surface metallopeptidases involved in blood pressure regulation: structure, inhibition and clinical perspectives. Pathol Biol (Paris) 46:191–200

    CAS  Google Scholar 

  • Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut EK, Porter CB, Proulx G, Qian C, Block AJ (2000) Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet 356:615–620

    Article  PubMed  CAS  Google Scholar 

  • Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD, Schultheiss HP, Hoeffken G (2001) Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension. Chest 120:1562–1569

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein I (2005) Human VIP-alpha: an emerging biologic response modifier to treat primary pulmonary hypertension. Expert Rev Cardiovasc Ther 3:565–569

    Article  PubMed  CAS  Google Scholar 

  • Ryan JW, Ryan US, Schultz DR, Whitaker C, Chung A (1975) Subcellular localization of pulmonary antiotensin-converting enzyme (kininase II). Biochem J 146:497–499

    PubMed  CAS  Google Scholar 

  • Said SI (2008) The vasoactive intestinal peptide gene is a key modulator of pulmonary vascular remodeling and inflammation. Ann NY Acad Sci 1144:148–153

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Mutt V (1970a) Polypeptide with broad biological activity: isolation from small intestine. Science 169:1217–1218

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Mutt V (1970b) Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature 225:863–864

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Rattan S (2004) The multiple mediators of neurogenic smooth muscle relaxation. Trends Endocrinol Metab 15:189–191

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Hamidi SA, Dickman KG, Szema AM, Lyubsky S, Lin RZ, Jiang YP, Chen JJ, Waschek JA, Kort S (2007) Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation 115:1260–1268

    PubMed  CAS  Google Scholar 

  • Sakamoto M, Nakao K, Morii N, Sugawara A, Yamada T, Itoh H, Shiono S, Saito Y, Imura H (1986) The lung as a possible target organ for atrial natriuretic polypeptide secreted from the heart. Biochem Biophys Res Commun 135:515–520

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto Y, Mashiko K, Saito N, Matsumoto H, Hara Y, Kutsukata N, Yokota H (2010) Effectiveness of human atrial natriuretic peptide supplementation in pulmonary edema patients using the pulse contour cardiac output system. Yonsei Med J 51:354–359

    Article  PubMed  CAS  Google Scholar 

  • Sakata J, Shimokubo T, Kitamura K, Nishizono M, Iehiki Y, Kangawa K, Matsuo H, Eto T (1994) Distribution and characterization of immunoreactive rat adrenomedullin in tissue and plasma. FEBS Lett 352:105–108

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Oka M, Hasunuma K, Ohnishi M, Sato K, Kira S (1995) Effects of separate and combined ETA and ETB blockade on ET-1-induced constriction in perfused rat lungs. Am J Physiol 269:L668–L672

    PubMed  CAS  Google Scholar 

  • Schermuly RT, Weissmann N, Enke B, Ghofrani HA, Forssmann WG, Grimminger F, Seeger W, Walmrath D (2001) Urodilatin, a natriuretic peptide stimulating particulate guanylate cyclase, and the phosphodiesterase 5 inhibitor dipyridamole attenuate experimental pulmonary hypertension: synergism upon coapplication. Am J Respir Cell Mol Biol 25:219–225

    Article  PubMed  CAS  Google Scholar 

  • Schmidt DT, Ruhlmann E, Waldeck B, Branscheid D, Luts A, Sundler F, Rabe KF (2001) The effect of the vasoactive intestinal polypeptide agonist Ro 25–1553 on induced tone in isolated human airways and pulmonary artery. Naunyn Schmiedebergs Arch Pharmacol 364:314–320

    Article  PubMed  CAS  Google Scholar 

  • Seymour AA, Abboa-Offei BE, Smith PL, Mathers PD, Asaad MM, Rogers WL (1995) Potentiation of natriuretic peptides by neutral endopeptidase inhibitors. Clin Exp Pharmacol Physiol 22:63–69

    Article  PubMed  CAS  Google Scholar 

  • Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Diez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ (2010) The angiotensin-converting enzyme 2/angiogenesis-(1–7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 182:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Shimokubo T, Sakata J, Kitamura K, Kangawa K, Matsuo H, Eto T (1995) Augmented adrenomedullin concentrations in right ventricle and plasma of experimental pulmonary hypertension. Life Sci 57:1771–1779

    Article  PubMed  CAS  Google Scholar 

  • Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    Article  PubMed  Google Scholar 

  • Smitherman TC, Popma JJ, Said SI, Krejs GJ, Dehmer GJ (1989) Coronary hemodynamic effects of intravenous vasoactive intestinal peptide in humans. Am J Physiol 257:H1254–H1262

    PubMed  CAS  Google Scholar 

  • Solari V, Puri P (2004) Genetic polymorphisms of angiotensin system genes in congenital diaphragmatic hernia associated with persistent pulmonary hypertension. J Pediatr Surg 39:302–306

    Article  PubMed  Google Scholar 

  • Soleilhac JM, Lucas E, Beaumont A, Turcaud S, Michel JB, Ficheux D, Fournie-Zaluski MC, Roques BP (1992) A 94-kDa protein, identified as neutral endopeptidase-24.11, can inactivate atrial natriuretic peptide in the vascular endothelium. Mol Pharmacol 41:609–614

    PubMed  CAS  Google Scholar 

  • Solomon SD, Skali H, Bourgoun M, Fang J, Ghali JK, Martelet M, Wojciechowski D, Ansmite B, Skards J, Laks T, Henry D, Packer M, Pfeffer MA (2005) Effect of angiotensin-converting enzyme or vasopeptidase inhibition on ventricular size and function in patients with heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) echocardiographic study. Am Heart J 150:257–262

    Article  PubMed  CAS  Google Scholar 

  • Sonoyama T, Tamura N, Miyashita K, Park K, Oyamada N, Taura D, Inuzuka M, Fukunaga Y, Sone M, Nakao K (2009) Inhibition of hepatic damage and liver fibrosis by brain natriuretic peptide. FEBS Lett 583:2067–2070

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan SP, Patel DR, Huang JX, Goetzl EJ (1993) Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 193:546–553

    Article  PubMed  CAS  Google Scholar 

  • St Hilaire RC, Murthy SN, Kadowitz PJ, Jeter JR Jr (2010) Role of VPAC1 and VPAC2 in VIP mediated inhibition of rat pulmonary artery and aortic smooth muscle cell proliferation. Peptides 31:1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Sun JZ, Chen SJ, Li G, Chen YF (2000) Hypoxia reduces atrial natriuretic peptide clearance receptor gene expression in ANP knockout mice. Am J Physiol Lung Cell Mol Physiol 279:L511–L519

    PubMed  CAS  Google Scholar 

  • Sun JZ, Oparil S, Lucchesi P, Thompson JA, Chen YF (2001) Tyrosine kinase receptor activation inhibits NPR-C in lung arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 281:L155–L163

    PubMed  CAS  Google Scholar 

  • Suzuki N, Harada M, Hosoya M, Fujino M (1994) Enhanced production of pituitary adenylate-cyclase-activating polypeptide by 1, N6-dibutyryladenosine 3’,5’-monophosphate, phorbol 12-myristate 13-acetate and by the polypeptide itself in human neuroblastoma cells, IMR-32. Eur J Biochem 223:147–153

    Article  PubMed  CAS  Google Scholar 

  • Svoboda M, Tastenoy M, Van RJ, Goossens JF, De NP, Waelbroeck M, Robberecht P (1994) Molecular cloning and functional characterization of a human VIP receptor from SUP-T1 lymphoblasts. Biochem Biophys Res Commun 205:1617–1624

    Article  PubMed  CAS  Google Scholar 

  • Szokodi I, Kinnunen P, Tavi P, Weckstrom M, Toth M, Ruskoaho H (1998) Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide. Circulation 97:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Tallerico-Melnyk T, Yip CC, Watt VM (1992) Widespread co-localization of mRNAs encoding the guanylate cyclase-coupled natriuretic peptide receptors in rat tissues. Biochem Biophys Res Commun 189:610–616

    Article  PubMed  CAS  Google Scholar 

  • Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244

    Article  PubMed  CAS  Google Scholar 

  • Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA 101:17300–17305

    Article  PubMed  CAS  Google Scholar 

  • Thompson JS, Morice AH (1995) Neutral endopeptidase inhibition increases the potency of ANP in isolated rat pulmonary resistance vessels and isolated blood perfused lungs. Pulm Pharmacol 8:143–147

    Article  PubMed  CAS  Google Scholar 

  • Thompson JS, Morice AH (1996) Neutral endopeptidase inhibitors and the pulmonary circulation. Gen Pharmacol 27:581–585

    Article  PubMed  CAS  Google Scholar 

  • Thompson JS, Sheedy W, Morice AH (1994a) Effects of the neutral endopeptidase inhibitor, SCH 42495, on the cardiovascular remodelling secondary to chronic hypoxia in rats. Clin Sci (Lond) 87:109–114

    CAS  Google Scholar 

  • Thompson JS, Sheedy W, Morice AH (1994b) Neutral endopeptidase (NEP) inhibition in rats with established pulmonary hypertension secondary to chronic hypoxia. Br J Pharmacol 113:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Tjen AL, Ekman R, Lippton H, Cary J, Keith I (1992) CGRP and somatostatin modulate chronic hypoxic pulmonary hypertension. Am J Physiol 263:H681–H690

    Google Scholar 

  • Tjen AL, Kraiczi H, Ekman R, Keith IM (1998) Sensory CGRP depletion by capsaicin exacerbates hypoxia-induced pulmonary hypertension in rats. Regul Pept 74:1–10

    Article  Google Scholar 

  • Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S, Yoshihara F, Kawano Y, Kohno M, Kangawa K (2004) Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology 145:2131–2140

    Article  PubMed  CAS  Google Scholar 

  • Toshimori H, Nakazato M, Toshimori K, Asai J, Matsukura S, Oura C, Matsuo H (1988) Distribution of atrial natriuretic polypeptide (ANP)-containing cells in the rat heart and pulmonary vein. Immunohistochemical study and radioimmunoassay. Cell Tissue Res 251:541–546

    Article  PubMed  CAS  Google Scholar 

  • Trippodo NC, Fox M, Monticello TM, Panchal BC, Asaad MM (1999) Vasopeptidase inhibition with omapatrilat improves cardiac geometry and survival in cardiomyopathic hamsters more than does ACE inhibition with captopril. J Cardiovasc Pharmacol 34:782–790

    Article  PubMed  CAS  Google Scholar 

  • Trippodo NC, Gabel RA, Harvey CM, Asaad MM, Rogers WL (1991) Heart failure augments the cardiovascular and renal effects of neutral endopeptidase inhibition in rats. J Cardiovasc Pharmacol 18:308–316

    Article  PubMed  CAS  Google Scholar 

  • Troughton RW, Rademaker MT, Powell JD, Yandle TG, Espiner EA, Frampton CM, Nicholls MG, Richards AM (2000) Beneficial renal and hemodynamic effects of omapatrilat in mild and severe heart failure. Hypertension 36:523–530

    Article  PubMed  CAS  Google Scholar 

  • Tsukada T, Horovitch SJ, Montminy MR, Mandel G, Goodman RH (1985) Structure of the human vasoactive intestinal polypeptide gene. DNA 4:293–300

    PubMed  CAS  Google Scholar 

  • Tucker JF, Brave SR, Charalambous L, Hobbs AJ, Gibson A (1990) L-NG-nitro arginine inhibits non-adrenergic, non-cholinergic relaxations of guinea-pig isolated tracheal smooth muscle. Br J Pharmacol 100:663–664

    Article  PubMed  CAS  Google Scholar 

  • Undem BJ, Dick EC, Buckner CK (1983) Inhibition by vasoactive intestinal peptide of antigen-induced histamine release from guinea-pig minced lung. Eur J Pharmacol 88:247–250

    Article  PubMed  CAS  Google Scholar 

  • Underwood DC, Bochnowicz S, Osborn RR, Louden CS, Hart TK, Ohlstein EH, Hay DW (1998) Chronic hypoxia-induced cardiopulmonary changes in three rat strains: inhibition by the endothelin receptor antagonist SB 217242. J Cardiovasc Pharmacol 31(Suppl 1):S453–S455

    Article  PubMed  CAS  Google Scholar 

  • Valentin JP, Qiu CB, Wiedemann E, Gardner D, Humphreys MH (1992) Inhibition of neutral endopeptidase amplifies the effects of endogenous atrial natriuretic peptide on blood pressure and fluid partition. Am J Hypertens 5:88–91

    PubMed  CAS  Google Scholar 

  • Van Geldre LA, Lefebvre RA (2004) Interaction of NO and VIP in gastrointestinal smooth muscle relaxation. Curr Pharm Des 10:2483–2497

    Article  PubMed  Google Scholar 

  • Veale CA, Alford VC, Aharony D, Banville DL, Bialecki RA, Brown FJ, Damewood JR Jr, Dantzman CL, Edwards PD, Jacobs RT, Mauger RC, Murphy MM, Palmer W, Pine KK, Rumsey WL, Garcia-Davenport LE, Shaw A, Steelman GB, Surian JM, Vacek EP (2000) The discovery of non-basic atrial natriuretic peptide clearance receptor antagonists. Part 1. Bioorg Med Chem Lett 10:1949–1952

    Article  PubMed  CAS  Google Scholar 

  • Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P (2004) Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110:1308–1312

    Article  PubMed  Google Scholar 

  • Villar IC, Panayiotou CM, Sheraz A, Madhani M, Scotland RS, Nobles M, Kemp-Harper B, Ahluwalia A, Hobbs AJ (2007) Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res 74:515–525

    Article  PubMed  CAS  Google Scholar 

  • von der Hardt K, Kandler MA, Popp K, Schoof E, Chada M, Rascher W, Dotsch J (2002) Aerosolized adrenomedullin suppresses pulmonary transforming growth factor-beta1 and interleukin-1 beta gene expression in vivo. Eur J Pharmacol 457:71–76

    Article  PubMed  Google Scholar 

  • von der Hardt K, Kandler MA, Chada M, Cubra A, Schoof E, Amann K, Rascher W, Dotsch J (2004) Brief adrenomedullin inhalation leads to sustained reduction of pulmonary artery pressure. Eur Respir J 24:615–623

    Article  PubMed  CAS  Google Scholar 

  • Vuckovic A, Rondelet B, Brion JP, Naeije R (2009) Expression of vasoactive intestinal peptide and related receptors in overcirculation-induced pulmonary hypertension in piglets. Pediatr Res 66:395–399

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Bogen C, Reisine T, Dichter M (1989) Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc Natl Acad Sci USA 86:9616–9620

    Article  PubMed  CAS  Google Scholar 

  • Webb DJ (1991) Endothelin receptors cloned, endothelin converting enzyme characterized and pathophysiological roles for endothelin proposed. Trends Pharmacol Sci 12:43–46

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Wallman LL, Jones R, Keogh AM, Scroope F, Penny R, Weber C, Macdonald PS (2000) Hemodynamic effects of Bosentan, an endothelin receptor antagonist, in patients with pulmonary hypertension. Circulation 102:411–418

    Article  PubMed  CAS  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    PubMed  CAS  Google Scholar 

  • Winter RJ, Zhao L, Krausz T, Hughes JM (1991) Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am Rev Respir Dis 144:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Wu F, Pan J, Morser J, Wu Q (2003) Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem 278:25847–25852

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Carretero OA, Liu YH, Yang F, Shesely EG, Oja-Tebbe N, Yang XP (2004) Dual inhibition of ACE and NEP provides greater cardioprotection in mice with heart failure. J Card Fail 10:83–89

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Hashimoto H, Hagihara N, Nishino A, Fujita T, Matsuda T, Baba A (1998) Cloning and characterization of the mouse pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Gene 211:63–69

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Wada A, Tsutamoto T, Ohnishi M, Horie M (2004) Long-term treatment with a phosphodiesterase type 5 inhibitor improves pulmonary hypertension secondary to heart failure through enhancing the natriuretic peptides cGMP pathway. J Cardiovasc Pharmacol 44:596–600

    Article  PubMed  CAS  Google Scholar 

  • Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan L, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK (2009) Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension 54:365–371

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci USA 97:8525–8529

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

  • Yang BC, Lippton H, Gumusel B, Hyman A, Mehta JL (1996) Adrenomedullin dilates rat pulmonary artery rings during hypoxia: role of nitric oxide and vasodilator prostaglandins. J Cardiovasc Pharmacol 28:458–462

    Article  PubMed  CAS  Google Scholar 

  • Yasoda A, Ogawa Y, Suda M, Tamura N, Mori K, Sakuma Y, Chusho H, Shiota K, Tanaka K, Nakao K (1998) Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem 273:11695–11700

    Article  PubMed  CAS  Google Scholar 

  • Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M, Tamura N, Ogawa Y, Nakao K (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80–86

    Article  PubMed  CAS  Google Scholar 

  • Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90:195–203

    Article  PubMed  CAS  Google Scholar 

  • Yoshibayashi M, Kamiya T, Kitamura K, Saito Y, Kangawa K, Nishikimi T, Matsuoka H, Eto T, Matsuo H (1997) Plasma levels of adrenomedullin in primary and secondary pulmonary hypertension in patients <20 years of age. Am J Cardiol 79:1556–1558

    Article  PubMed  CAS  Google Scholar 

  • Yuan SH, Dai DZ, Guan L, Dai Y, Ji M (2006) CPU0507, an endothelin receptor antagonist, improves rat hypoxic pulmonary artery hypertension and constriction in vivo and in vitro. Clin Exp Pharmacol Physiol 33:1066–1072

    Article  PubMed  CAS  Google Scholar 

  • Zanchi A, Maillard M, Burnier M (2003) Recent clinical trials with omapatrilat: new developments. Curr Hypertens Rep 5:346–352

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhang JQ, Liu ZH, Xiong CM, Ni XH, Hui RT, He JG, Pu JL (2009) VIP gene variants related to idiopathic pulmonary arterial hypertension in Chinese population. Clin Genet 75:544–549

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Winter RJ, Krausz T, Hughes JM (1991) Effects of continuous infusion of atrial natriuretic peptide on the pulmonary hypertension induced by chronic hypoxia in rats. Clin Sci (Lond) 81:379–385

    CAS  Google Scholar 

  • Zhao L, al-Tubuly R, Sebkhi A, Owji AA, Nunez DJ, Wilkins MR (1996a) Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung. Br J Pharmacol 119:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Brown LA, Owji AA, Nunez DJ, Smith DM, Ghatei MA, Bloom SR, Wilkins MR (1996b) Adrenomedullin activity in chronically hypoxic rat lungs. Am J Physiol 271:H622–H629

    PubMed  CAS  Google Scholar 

  • Zhao L, Hughes JM, Winter RJ (1992) Effects of natriuretic peptides and neutral endopeptidase 24.11 inhibition in isolated perfused rat lung. Am Rev Respir Dis 146:1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Long L, Morrell NW, Wilkins MR (1999) NPR-A-Deficient mice show increased susceptibility to hypoxia-induced pulmonary hypertension. Circulation 99:605–607

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Mason NA, Strange JW, Walker H, Wilkins MR (2003) Beneficial effects of phosphodiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic Peptide activity. Circulation 107:234–237

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Liu Z, Wang Z, Yang C, Liu J, Lu J (2007) Effect of prepro-calcitonin gene-related peptide-expressing endothelial progenitor cells on pulmonary hypertension. Ann Thorac Surg 84:544–552

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the British Heart Foundation, the British Lung Foundation and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Hobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baliga, R.S., MacAllister, R.J., Hobbs, A.J. (2013). Vasoactive Peptides and the Pathogenesis of Pulmonary Hypertension: Role and Potential Therapeutic Application. In: Humbert, M., Evgenov, O., Stasch, JP. (eds) Pharmacotherapy of Pulmonary Hypertension. Handbook of Experimental Pharmacology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38664-0_19

Download citation

Publish with us

Policies and ethics