Skip to main content

Human Movement Analysis with Inertial Sensors

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 4))

Abstract

Present-day systems for human movement analysis are not portable, have a limited capture volume and require a trained technician to analyze the data. To extend the use and benefits to non-laboratory settings the acquisition should be robust, reliable and easy to perform. Ideally, data collection and analysis would be automated to the point where no trained technicians are required. Over the last decade several inertial sensor approaches have been put forward that address most of the aforementioned limitations. Advancements in micro-electro-mechanical sensors (MEMS) and orientation estimation algorithms are boosting the use of inertial sensors in motion capture applications. These sensors currently are the most promising opportunity for non-restricted human motion analysis. In this chapter we will describe the types of sensors used, followed by an overview of their use in the biomechanics community (Sect. 16.1); provide the necessary background of basic mathematics for those that want to refresh the basics of kinematics (case studies and appendix). The limitations of traditional systems can be dealt with due to the redundant information available to obtain orientation estimates. There are several different methods to derive orientation from sensor information; we will highlight the main groups of algorithms and the various ways in which they use the available data (Sect. 16.3). The chapter furthermore contains two hands-on examples to derive orientation (case study 1) and extract joint angles (case study 2, Sect. 16.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The flexion cycle we have identified resides in the interval between frames 431 and 450 in the datasheet provided.

References

  • Zhou H, Hu H (2007) Upper limb motion estimation from inertial measurements. J Inf Technol 13(1):1–14

    MathSciNet  Google Scholar 

  • Morris JRW (1973) Accelerometry: a technique for the measurement of human body movements. J Biomech 6:729–736

    Article  Google Scholar 

  • Giansanti D, Macellari V, Maccioni G, Cappozzo A (2003) Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Trans Biomed Eng 50(4):476–483

    Google Scholar 

  • Willemsen ATM, Frigo C, Boom HBK (1991) Lower extremity angle measurement with accelerometers error and sensitivity analysis. IEEE Trans Biomed Eng 38:1186–1193

    Article  Google Scholar 

  • Willemsen AT, Van Alste JA, Boom HB (1990) Real-time gait assessment utilizing a new way of accelerometry. J Biomech 23(8):859–863

    Google Scholar 

  • Luinge H, Veltink PH (2004) Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans Neural Syst Rehabil Eng Pub IEEE Eng Med Biol Soc 12(1):112–121. doi:10.1109/TNSRE.2003.822759

    Article  Google Scholar 

  • Williamson R, Andrews BJ (2001) Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Med Biol Eng Compu 39(3):294–302

    Article  Google Scholar 

  • Bachmann E (2004) An investigation of the effects of magnetic variations on inertial/magnetic orientation sensors. In: IEEE international conference on robotics and automation, pp 1115–1122

    Google Scholar 

  • Luinge H, Veltink PH, Baten CTM (2007a) Ambulatory measurement of arm orientation. J Biomech 40(1):78–85. doi:10.1016/j.jbiomech.2005.11.011

    Article  Google Scholar 

  • Winter DA (2004) The biomechanics and motor control of human movement, 3rd edn. Wiley, New York

    Google Scholar 

  • Vaughan CL, Davis BL, O’Connor JC (1999) Dynamics of human gait. Kiboho, Cape, p 141

    Google Scholar 

  • Kemp B, Janssen AJMW, van der Kamp B (1998) Body position can be monitored in 3D using miniature accelerometers and earth-magnetic field sensors. Electroencephalogr Clin Neurophysiol Electromyogr Motor Control 109:484–488

    Article  Google Scholar 

  • Technaid SL (2013) Spain. www.technaid.com

  • Olivares A, Górriz JM, Ramírez J, Olivares G (2011). Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering. Meas Sci Technol 22(2):025801. doi:10.1088/0957-0233/22/2/025801

  • Cheng Y, Shuster MD (2005) Quest and the anti-quest: good and evil attitude estimation. J Astronaut Sci 53(3):337–351

    Google Scholar 

  • Shuster MD (2006) The quest for better attitudes. J Astronaut Sci 54(3-4):657–683

    Google Scholar 

  • Yun X, Bachmann ER (2006) Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. Pattern Recogn 22(6):1216–1227

    Google Scholar 

  • Sabatini AM (2006) Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng 53(7):1346–1356. doi:10.1109/TBME.2006.875664

    Article  Google Scholar 

  • Roetenberg D (2006) Inertial and magnetic sensing of human motion. Ph.D. thesis, Twente University, Enschede, p 126

    Google Scholar 

  • Park EJ (2009) Minimum-order Kalman filter with vector selector for accurate estimation of human body orientation. IEEE Trans Rob 25(5):1196–1201. doi:10.1109/TRO.2009.2017146

    Article  Google Scholar 

  • Faber GS, Kingma I, Martin Schepers H, Veltink PH, Van Dieën JH (2010) Determination of joint moments with instrumented force shoes in a variety of tasks. J Biomech 43(14):2848–2854. doi:10.1016/j.jbiomech.2010.06.005

    Article  Google Scholar 

  • Van den Noort JC, Ferrari A, Cutti AG, Becher JG, Harlaar J (2012) Gait analysis in children with cerebral palsy via inertial and magnetic sensors. Med Biol Eng Compu. doi:10.1007/s11517-012-1006-5

    Google Scholar 

  • Favre J, Aissaoui R, Jolles BM, de Guise Ja, Aminian K (2009) Functional calibration procedure for 3D knee joint angle description using inertial sensors. J Biomech 42(14):2330–2335. doi:10.1016/j.jbiomech.2009.06.025

    Article  Google Scholar 

  • O’Donovan KJ, Kamnik R, O’Keeffe DT, Lyons GM (2007) An inertial and magnetic sensor based technique for joint angle measurement. J Biomech 40:2604–2611

    Article  Google Scholar 

  • Picerno P, Cereatti A, Cappozzo A (2008) Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 28:508–595

    Article  Google Scholar 

  • Luinge H, Veltink PH, Baten CTM (2007b) Ambulatory measurement of arm orientation. J Biomech 40(1):78–85. doi:10.1016/j.jbiomech.2005.11.011

    Article  Google Scholar 

  • Jovanov E, Milenkovic A, Otto C, De Groen PC (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J Neuroeng Rehabil 2(1):6. doi:10.1186/1743-0003-2-6

    Article  Google Scholar 

  • Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of 3-Dimensional motions-application to the knee. J Biomech Eng Trans ASME 105:136–144

    Google Scholar 

  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: ankle, hip, and spine international society of biomechanics. J Biomech 35:543–548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lambrecht .

Editor information

Editors and Affiliations

Appendices

Appendix: Theoretical Basis for Human Movement Analysis with Inertial Sensors

Kinematics is the branch of mechanics that describes the motion of points, bodies (objects) and systems of bodies (groups of objects) without consideration of the causes of motion. Therefore, kinematics is not concerned with the forces, either external or internal, that cause the movement. It includes the description of linear and angular displacements and its time-derivatives: velocities and accelerations. A complete and accurate quantitative description of the simplest movement requires a huge volume of data and a large number of calculations, resulting in an enormous number of graphic plots. Therefore, it should be kept in mind that any given analysis may use only a small fraction of the available kinematic variables.

1.1 Cartesian Reference Systems

A reference system is an adequate and arbitrary system where the position of any point (or solid) is referenced. A Cartesian reference system is formed by three perpendicular axes, which origin is located at the common intersection of the axes, determining the 3 dimensions of the space. Any point in the space is therefore located with respect to this reference system by three coordinates, one by each axis: \( \left( {x,\,y,\,z} \right) \) (Fig. 16.6).

Fig. 16.6
figure 6

Cartesian reference system

Two types of reference systems are commonly defined for human movement analysis:

  • Fixed reference system, also called absolute or inertial, which is a Cartesian reference frame fixed to the world, coincident with the view of the external observer. In this reference system magnitudes related with global body movements are defined, as the movement of the body center of mass or trunk bending and rotations.

  • Relative reference system, also called segment reference system, is a Cartesian reference frame fixed to the moving segment. A common variable measured on this reference system is joint movement.

The relative system commonly defined for human movement analysis has its origin coincident with the body center of mass, whose directions axis \( (X - Y - Z) \) are coincident with the main body axis as follows: \( X \) is the anterior axis (also called direction), pointing forward, \( Y \) is the vertical axis (also called direction), pointing upwards, and \( Z \) is the medial–lateral axis (also called direction), pointing right.

This body-centered reference system also contains the main body planes:

  • Sagittal plane: divides any part of the body into right and left portions. It is perpendicular to z (medial–lateral) axis. Flexion and extension takes place in the sagittal plane.

  • Frontal plane: divides any part of the body into front and back portions. It is perpendicular to x (anterior) axis. Abduction and adduction take place in the frontal plane.

  • Transverse plane divides any part of the body into upper and lower portions. It is perpendicular to y (vertical) axis. Internal and external rotation takes place in the transverse plane. Also called medial and lateral rotation.

Three-Dimensional Kinematics

2.1 Matrix Notation for Reference Systems

The human musculoskeletal system is composed of a series of jointed links, which are commonly approximated as rigid bodies. Six independent parameters, the degrees of freedom, DOF, are needed to describe the location (\( (x,y,z) \) coordinates with respect to reference system axes) and orientation (\( (\alpha ,\beta ,\gamma ) \) angles with respect to reference system planes) of a segment in space. Those six coordinates \( (x,y,z,\alpha ,\beta ,\gamma ) \)constitute the degrees of freedom of a segment, and therefore uniquely define its spatial location and orientation at any time instant.

Most of the mechanical quantities one has to deal with in motion analysis, such as linear and angular position, velocity and acceleration of the markers and segments, are vectors. Because a vector has both magnitude and direction, one can describe the same vector in several different perspectives, depending on the intention or objective of the analysis. Describing a vector in a particular perspective is in essence equivalent to computing its components based on the coordinate system of the particular perspective.

Matrices are a form of mathematical notation suitable for operations among coordinate systems and vectors. A reference system can be defined using three vectors that represent each system’s axes, whose length is the unity. Therefore, the unit vector of the axes reference system, hence unit coordinate vectors (Fig. 16.7 right), can be expressed follows, where \( \varvec{i},\varvec{j},\varvec{k} \) are the unit vectors of the \( X - Y - Z \) respectively: \( \varvec{i} = [1,0,0] ,\, \varvec{j} = [0,1,0] ,\, \varvec{k} = [0,0,1] \). Using this notation, the global coordinate system can be expressed by sorting \( \varvec{i},\varvec{j},\varvec{k} \) vectors into a matrix as follows:

Fig. 16.7
figure 7

Vector coordinates (left). Unitary vectors that define a reference system (right)

$$ \left[ {\varvec{i},\varvec{j},\varvec{k}} \right] = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right] $$

2.2 Rotation Matrix

As shown in Fig. 16.7 left, a vector can be expressed as the sum of the component vectors projected over the \( i,j,k \) vectors:

$$ \varvec{V}_{x} = v_{x} \cdot \varvec{i };\quad \varvec{ V}_{\varvec{y}} = \varvec{v}_{\varvec{y}} \cdot\varvec{j };\varvec{ }\quad \varvec{V}_{\varvec{z}} = \varvec{v}_{\varvec{z}} \cdot\varvec{k }; $$
$$ \varvec{V} = \left[ {\varvec{v}_{\varvec{x}} ,\varvec{v}_{\varvec{y}} ,\varvec{v}_{\varvec{z}} } \right] = \varvec{i} \cdot v_{x} + \varvec{j} \cdot v_{y} + \varvec{k} \cdot v_{z} $$

In other words, one can not only describe the same vector in several different perspectives, but also change the perspective from one to another depending on the situation and needs. This changing perspective of describing a vector is called vector transformation or axis transformation, and it is done through rotation matrices. A rotation matrix is the mathematical form for expressing in a compact way the orientation of a reference system, usually a mobile one, with respect to another, usually fixed reference system.

To transform a vector from one reference frame to another is equivalent to changing the perspective of describing the vector from one to another. A transformation alters not the vector, but the components as follows:

$$ v\varvec{'}_{x} = \varvec{v}\cdot\varvec{i'} = \left( {v_{x} \cdot\varvec{i} + \varvec{v}_{\varvec{y}} \cdot\varvec{j} + \varvec{v}_{\varvec{z}} \cdot\varvec{k}} \right)\cdot\varvec{i'} = \varvec{v}_{\varvec{x}} \cdot\varvec{i}\cdot\varvec{i'} + \varvec{v}_{\varvec{y}} \cdot\varvec{j}\cdot\varvec{i'} + \varvec{v}_{\varvec{z}} \cdot\varvec{k}\cdot\varvec{i'} $$
$$ \varvec{v'}_{\varvec{y}} = \varvec{v}\cdot\varvec{j'} = \left( {\varvec{v}_{\varvec{x}} \cdot\varvec{i} + \varvec{v}_{\varvec{y}} \cdot\varvec{j} + \varvec{v}_{\varvec{z}} \cdot\varvec{k}} \right)\cdot\varvec{j} = \varvec{v}_{\varvec{x}} \cdot\varvec{i}\cdot\varvec{j'} + \varvec{v}_{\varvec{y}} \cdot\varvec{j}\cdot\varvec{j} + \varvec{v}_{\varvec{z}} \cdot\varvec{k}\cdot\varvec{j'} $$
$$ \varvec{v'}_{\varvec{z}} = \varvec{v}\cdot\varvec{k'} = \left( {\varvec{v}_{\varvec{x}} \cdot\varvec{i} + \varvec{v}_{\varvec{y}} \cdot\varvec{j} + \varvec{v}_{\varvec{z}} \cdot\varvec{k}} \right)\cdot\varvec{k'} = \varvec{v}_{\varvec{x}} \cdot\varvec{i}\cdot\varvec{k'} + \varvec{v}_{\varvec{y}} \cdot\varvec{j}\cdot\varvec{k'} + \varvec{v}_{\varvec{z}} \cdot\varvec{k}\cdot\varvec{k'} $$
$$ \left[ {\begin{array}{*{20}c} {v'_{x} } \\ {v'_{y} } \\ {v'_{z} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\varvec{i}\cdot\varvec{i'}} & {\varvec{j}\cdot\varvec{i'}} & {\varvec{k}\cdot\varvec{i'}} \\ {\varvec{i}\cdot\varvec{j'}} & {\varvec{j}\cdot\varvec{j'}} & {\varvec{k}\cdot\varvec{j'}} \\ {\varvec{i}\cdot\varvec{k'}} & {\varvec{j}\cdot\varvec{k'}} & {\varvec{k}\cdot\varvec{k'}} \\ \end{array} } \right]\cdot\left[ {\begin{array}{*{20}c} {v_{x} } \\ {v_{y} } \\ {v_{z} } \\ \end{array} } \right] $$

In those transformations, \( \varvec{i},\varvec{j},\varvec{k} \) are the unit vectors of the \( X - Y - Z \) system, and \( \varvec{i'},\varvec{j'},\varvec{k'} \) are the unit vectors of the \( X - Y - Z \) system. Therefore, the transformation matrix from the global reference frame (frame G) to a particular local reference frame (frame L) can be written as:

$$ \left[ {\begin{array}{*{20}c} {v'_{x} } \\ {v'_{y} } \\ {v'_{z} } \\ \end{array} } \right] = {}_{{}}^{L} \varvec{T}_{G} \cdot\left[ {\begin{array}{*{20}c} {v_{x} } \\ {v_{y} } \\ {v_{z} } \\ \end{array} } \right] $$
$$ {}_{{}}^{L} \varvec{T}_{G} = \left[ {\begin{array}{*{20}c} {\varvec{i}\cdot\varvec{i'}} & {\varvec{j}\cdot\varvec{i'}} & {\varvec{k}\cdot\varvec{i'}} \\ {\varvec{i}\cdot\varvec{j'}} & {\varvec{j}\cdot\varvec{j'}} & {\varvec{k}\cdot\varvec{j'}} \\ {\varvec{i}\cdot\varvec{k'}} & {\varvec{j}\cdot\varvec{k'}} & {\varvec{k}\cdot\varvec{k'}} \\ \end{array} } \right] $$

Obviously, in human movement analysis the local reference frame is typically fixed to a segment or a body part, whereas the global reference system is reference system fixed to the laboratory, the global reference system.

Similarly, \( {}_{{}}^{G} \varvec{T}_{L} \) is the inverse rotation matrix of \( {}_{{}}^{L} \varvec{T}_{G} \) which can also be derived as:

$$ {}_{{}}^{\varvec{G}} \varvec{T}_{\varvec{L}} = \left[ {\begin{array}{*{20}c} {\varvec{i'}\cdot\varvec{i}} & {\varvec{j'}\cdot\varvec{i}} & {\varvec{k'}\cdot\varvec{i}} \\ {\varvec{i'}\cdot\varvec{j}} & {\varvec{j'}\cdot\varvec{j}} & {\varvec{k'}\cdot\varvec{j}} \\ {\varvec{i'}\cdot\varvec{k}} & {\varvec{j'}\cdot\varvec{k}} & {\varvec{k'}\cdot\varvec{k}} \\ \end{array} } \right] $$

However, a special feature of the rotation matrices is that they are orthonormal, that is, the vectors \( \varvec{i},\varvec{j},\varvec{k} \) are orthogonal and unitary. Therefore, the inverse of those matrices are in fact their transpose, so the change is straightforward:

$$ {}_{{}}^{G} \varvec{T}_{L} = \left( {{}_{{}}^{L} \varvec{T}_{G} } \right)^{ - 1} = \left( {{}_{{}}^{L} \varvec{T}_{G} } \right)^{T} $$

A series of transformations can be performed through successive multiplication of the transformation matrices from the right to the left. Once the transformation matrices from the global reference frame to the local reference frames are known, computation of the transformation matrices among the local reference frames is simply a matter of transposition and multiplication of the transformation matrices. Hence the transformation matrix from one local reference frame (A) to another (B) can be easily obtained through cascading of the transformation matrices:

$$ {}_{{}}^{B} \varvec{T}_{A} = {}_{{}}^{B} \varvec{T}_{G} \cdot{}_{{}}^{G} \varvec{T}_{A} = {}_{{}}^{B} \varvec{T}_{G} \cdot\left( {{}_{{}}^{A} \varvec{T}_{G} } \right)^{ - 1} = {}_{{}}^{B} \varvec{T}_{G} \cdot\left( {{}_{{}}^{A} \varvec{T}_{G} } \right)^{T} $$

2.3 How to Extract Rotation Angles Using Euler Convention

As shown above, the components of a free vector change as the reference frame changes. Figure 16.8 shows two different reference frames: the \( X - Y \) system and the \( X^{'} - Y' \) system. Vector \( \varvec{v} \) can be expressed as \( \varvec{v}(x, y) \) in the \( X - Y \) system, \( \varvec{ v}(x', y') \) in the \( X' - Y' \) system. The relationships between \( X - Y \) and \( X' - Y' \) can be obtained from the geometric relationships:

$$ x^{\prime} = x \cdot cos\left( \Upphi \right) + y \cdot sin\left( \Upphi \right) $$
$$ y^{\prime} = y \cdot cos\left( \Upphi \right) - x \cdot sin\left( \Upphi \right) $$

In matrix form:

$$ \left[ {\begin{array}{*{20}c} {x'} \\ {y'} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {cos\left( \Upphi \right)} & {sin\left( \Upphi \right)} \\ { - sin\left( \Upphi \right)} & {cos\left( \Upphi \right)} \\ \end{array} } \right]\cdot\left[ {\begin{array}{*{20}c} x \\ y \\ \end{array} } \right] $$

It is straightforward to expand these manipulations between axes to the three-dimensional space:

$$ x^{\prime} = x \cdot cos\left( \Upphi \right) + y \cdot sin\left( \Upphi \right) $$
$$ y^{\prime} = y \cdot cos\left( \Upphi \right) - x \cdot sin\left( \Upphi \right) $$
$$ z' = z $$

In matrix form:

$$ \left[ {\begin{array}{*{20}c} {x'} \\ {y'} \\ {z'} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {cos\left( \Upphi \right)} & {sin\left( \Upphi \right)} & 0 \\ { - sin\left( \Upphi \right)} & {cos\left( \Upphi \right)} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\cdot\left[ {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array} } \right] $$

Therefore, the rotation around the z axis from \( X - Y - Z \) reference system to \( X^{'} - Y^{'} - Z' \) is expressed as follows:

Fig. 16.8
figure 8

Two-dimensional vector transformation between two coincident reference frames

$$ \varvec{R}_{z} \left( \Upphi \right) = \left[ {\begin{array}{*{20}c} {cos\left( \Upphi \right)} & {sin\left( \Upphi \right)} & 0 \\ { - sin\left( \Upphi \right)} & {cos\left( \Upphi \right)} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right] $$

Rotation around the \( X \) and \( Y \) axis can be obtained in a similar procedure:

$$ \varvec{R}_{x} \left( \Upphi \right) = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {cos\left( \Upphi \right)} & {sin\left( \Upphi \right)} \\ 0 & { - sin\left( \Upphi \right)} & {cos\left( \Upphi \right)} \\ \end{array} } \right] $$
$$ \varvec{R}_{y} \left( \Upphi \right) = \left[ {\begin{array}{*{20}c} {cos\left( \Upphi \right)} & 0 & { - sin\left( \Upphi \right)} \\ 0 & 1 & 0 \\ { - sin\left( \Upphi \right)} & 0 & {cos\left( \Upphi \right)} \\ \end{array} } \right] $$

Once rotation around each of the three reference system axis is defined, an arbitrary rotation, which is usually composed by rotations around all three axes, can be seen as a composition of three sequential rotations, which is actually what the Euler theorem states.

Using Euler theorem, any arbitrary rotation can be de-composed into three sequential rotations. For example, consider the sequence \( X - Y' - Z'' \). This means that we rotate about \( X \) axis first, \( \theta_{1} \) degrees. As result we get the new orientation, given by \( X' - Y' - Z' \). Then a rotation around the new \( Y' \) axis \( \theta_{2} \) degrees is made, resulting in the new orientation \( X'' - Y'' - Z'' \). A final rotation around the new \( Z'' \) axis \( \theta_{3} \) degrees is made, resulting in the resulting final orientation \( X''' - Y''' - Z''' \).

Taking each rotation matrix, any point \( \varvec{p}\left( {x,y,z} \right) \)expressed in the \( X - Y - Z \) reference system (local) can be transformed (expressed) in the global reference system \( X''^{'} - Y''^{'} - Z''' \) as follows:

$$ \left[ {\begin{array}{*{20}c} {p_{x'''} } \\ {p_{y'''} } \\ {p_{z'''} } \\ \end{array} } \right] = \left[ {\varvec{R}_{z} \left( {\theta_{3} } \right)} \right]\cdot\left[ {\varvec{R}_{y} \left( {\theta_{2} } \right)} \right]\cdot\left[ {\varvec{R}_{x} \left( {\theta_{1} } \right)} \right]\cdot\left[ {\begin{array}{*{20}c} {p_{x} } \\ {p_{y} } \\ {p_{z} } \\ \end{array} } \right] = {}_{{}}^{L} \varvec{R}_{G} $$

Expanding the former, and using shorthand notation where \( c1 = cos\left( {\theta_{1} } \right) \) and \( s2 = sin\left( {\theta_{2} } \right) \)

$$ \left[ {\begin{array}{*{20}c} {p_{x'''} } \\ {p_{y'''} } \\ {p_{z'''} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {c2 \cdot c3} & {s3 \cdot c1 + s1 \cdot s2 \cdot c3} & {s1 \cdot s2 - c1 \cdot s2 \cdot c3} \\ { - c2 \cdot c3} & {c1 \cdot c3 - s1 \cdot s2 \cdot s3} & {s1{\text{c3 + c1}}s2 \cdot s3} \\ {s2} & { - s2 \cdot c2} & {c1 \cdot c2} \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}c} {p_{x} } \\ {p_{y} } \\ {p_{z} } \\ \end{array} } \right] $$

From the above matrix, \( \theta_{1} \), \( \theta_{2} \) and \( \theta_{3} \) angles can be obtained as follows:

$$ \theta_{2} = arcsin\left( {{}_{{}}^{L} \varvec{R}_{G} \left( {3,1} \right)} \right) $$
$$ \theta_{1} = arcos\left( {\frac{{{}_{{}}^{L} \varvec{R}_{G} \left( {3,3} \right)}}{{cos\left( {\theta_{2} } \right)}}} \right) $$
$$ \theta_{3} = arcos\left( {\frac{{{}_{{}}^{L} \varvec{R}_{G} \left( {1,1} \right)}}{{cos\left( {\theta_{2} } \right)}}} \right) $$

This example corresponds to a rotation sequence around \( X - Y' - Z' \) axes. However, any other rotating sequence can be used. In theory, there are 12 possible correct rotation sequences, by the combination of the \( X - Y - Z \) rotations.

2.4 International Society of Biomechanics Standards

One of the characteristics of Euler theorem, is that the value of \( \theta_{1} \), \( \theta_{2} \) and \( \theta_{3} \) angles depend on the rotation sequence assumed, this makes the comparison of data among various studies difficult, if not impossible. On the other hand, some rotation sequences are closer to representing joint rotations in clinically relevant terms, which makes the application and interpretation of biomechanical findings easier and more welcoming to clinicians.

The international society of biomechanics has made recommendations for the definitions of segment coordinate systems as well as for rotation sequences for reporting joint movement (Grood and Suntay 1983; Wu et al. 2002). The purpose was to present these definitions to the biomechanics community so as to encourage the use of these recommendations, to provide first hand feedback, and to facilitate the revisions. It was hoped that this process will help the biomechanics community to move towards the development and use of a set of widely acceptable standards for better communication among various research groups, and among biomechanists, physicians, physical therapists, and other related interest groups. Those recommendations include the definitions for major human joints as ankle, hip, spine, shoulder, elbow, wrist and hand.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lambrecht, S., del-Ama, A.J. (2014). Human Movement Analysis with Inertial Sensors. In: Pons, J., Torricelli, D. (eds) Emerging Therapies in Neurorehabilitation. Biosystems & Biorobotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38556-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38556-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38555-1

  • Online ISBN: 978-3-642-38556-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics