Skip to main content

Robotic Rehabilitation: Ten Critical Questions about Current Status and Future Prospects Answered by Emerging Researchers

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 4))

Abstract

Robotic rehabilitation research and development accelerated dramatically in the last 20 years, yet the success of the field is still debatable. A critical evaluation of the the current status and future prospects of the field is provided by discussing 10 key questions for the field. Five emerging researchers in the field offer responses to the questions, intending to provide a means to step back and see the field through new eyes. A senior researcher in the field briefly comments on this emerging perspective. Enhanced adaptability and intelligence in addition to better integration within the patient's environmental context were identified in this chapter as the areas for future breakthroughs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Acronyms refer to authors’ names. For details go to ‘About the authors’ section, at the end of this chapter.

References

  • Akdogan E, Adli M (2011) The design and control of a therapeutic exercise robot for lower limb rehabilitation: physiotherabot. Mechatronics 21(3):509–522

    Article  Google Scholar 

  • Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE (2007) A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 15(3):387–400

    Article  Google Scholar 

  • Batavia AI, Hammer GS, Andrew I, Batavia JD, Guy SH (1990) Toward the development of consumer-based criteria for the evaluation of assistive devices. J Rehabil Res Dev 27(4):425

    Article  Google Scholar 

  • Balasubramanian S, Klein J, Burdet E (2010) Robot-assisted rehabilitation of hand function. Curr Opin Neurol 23(6):661–670

    Article  Google Scholar 

  • Bäck I, Kallio J (2012) Remote monitoring of nursing home residents using a humanoid robot. J Telemedicine Telecare 18(6):357–361

    Article  Google Scholar 

  • Ball SJ, Brown I, Scott SH (2007) Designing a robotic exoskeleton for shoulder complex rehabilitation in 30th Can Med Biol Eng Conf (CMBEC30) pp 3–6

    Google Scholar 

  • Bergmann J, Krewer C, Müller F, Koenig A, Riener R (2011) Virtual reality to control active participation in a subacute stroke patient during robot-assisted gait training in IEEE Int Conf Robot Autom (ICORR) 2011:1–5

    Google Scholar 

  • Belda-Lois JM, De-Rosario H, Pons R, Poveda R, Morón, R. Porcar A, GARCÍA AC, Gómez A (2010) Can human movement analysis contribute to usability understanding? Hum Mov Sci 29:529–541

    Google Scholar 

  • Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuro Eng Rehabil 8(1):66

    Article  Google Scholar 

  • Boninger ML, Cowan R (2012) Why do we need improved mobility technology? J Neuro Eng Rehabil 9(1):16

    Article  Google Scholar 

  • Brewer L, Horgan F, Hickey A, Williams D (2012) Stroke rehabilitation: recent advances and future therapies QJM

    Google Scholar 

  • Cajigas I, Goldsmith MT, Duschau-Wicke A, Riener R, Smith MA, Brown EN, Bonato P (2010) “Assessment of lower extremity motor adaptation via an extension of the force field adaptation paradigm”, in IEEE engineering in medicine and biology. Soc 2010:4522–4525

    Google Scholar 

  • Chen CC, Bode RK (2011) Factors influencing therapists’ decision-making in the acceptance of new technology devices in stroke rehabilitation. Am J Phys Med Rehabil 90(5):415–425

    Article  Google Scholar 

  • Controzzi M, Cipriani C, Carrozza MC (2010) Miniaturized non-back-drivable mechanism for robotic applications. Mech Mach Theory 45(10):1395–1406

    Article  MATH  Google Scholar 

  • Cooper RA, Dicianno BE, Brewer B, LoPresti E, Ding D, Simpson R, Grindle G, Wang H (2008) A perspective on intelligent devices and environments in medical rehabilitation Med eng phys 30(10):1387–1398

    Google Scholar 

  • del-Ama A, Koutsou A, Moreno J (2012) Review of hybrid exoskeletons to restore gait following spinal cord injury J Rehabil Res Dev 49(4):497–514

    Google Scholar 

  • Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot 11:1–11

    Article  Google Scholar 

  • Dobkin BH, Duncan PW (2012) Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair 26(4):308–317

    Article  Google Scholar 

  • Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3(9):528–536

    Article  Google Scholar 

  • Domingo A, Lam T, Wolfe DL, Eng JJ (2006) Lower limb rehabilitation following spinal cord injury, Version 4. Spinal Cord Injury Rehabil Evidence, Vancouver

    Google Scholar 

  • Dollar AM, Herr H (2007) Active orthoses for the lower-limbs: challenges and state of the art. IEEE Int Conf Rehabil Robot 1:968–977

    Google Scholar 

  • Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Rob 24(1):144–158

    Article  Google Scholar 

  • Freeman C, Hughes A, Burridge J, Chappell P, Lewin P, Rogers E (2009) Iterative learning control of FES applied to the upper extremity for rehabilitation Control Eng Pract 17(3):368–381

    Google Scholar 

  • Gelhaus P (2011) Robot decisions: on the importance of virtuous judgment in clinical decision making. J Eval Clin Pract 17:883–887

    Article  Google Scholar 

  • Hesse S, Schmidt H, Werner C, Bardeleben A (2003) Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 16(6):705–710

    Article  Google Scholar 

  • Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG (2009) Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13

    Google Scholar 

  • Hintermüller C, Guger C, Edlinger G (2011) Brain-computer interface: generic control interface for social interaction applications. Adv Comput Intell 386–392

    Google Scholar 

  • Holden M (2007) Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans Neural Syst Rehabil Eng 15(1):36–42

    Article  Google Scholar 

  • Hoenig H, Taylor DH, Sloan FA (2003) Does assistive technology substitute for personal assistance among the disabled elderly? Am J Public Health 93(2):330–7

    Google Scholar 

  • Housman SJSJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5):505–514

    Article  Google Scholar 

  • Inamura T, Okada K, Tokutsu S, Hatao N, Inaba M, Inoue H (2009) HRP-2 W: A humanoid platform for research on support behavior in daily life environments. Robot Auton Syst 57:145–154

    Article  Google Scholar 

  • Ikemoto S, Amor H (2012) Physical human–robot interaction. IEEE Robot Autom Mag 1–13

    Google Scholar 

  • Jonić S, Janković T, Gajić V, Popović D (1999) Three machine learning techniques for automatic determination of rules to control locomotion. IEEE Trans Biomed Eng 46(3):300–310

    Article  Google Scholar 

  • Krebs H, Hogan N (2012) Robotic therapy: the tipping point. Am J Phys Med Rehabil 91(11) (Suppl 3):S290–S297

    Google Scholar 

  • Kwakkel G, Kollen B, Krebs H (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121

    Google Scholar 

  • Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4):428–432

    Article  Google Scholar 

  • Knikou M (2010) Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 121(10):1655–1668

    Article  Google Scholar 

  • Kwakkel G, Kollen BJ, Wagenaar RC (2002) Long term effects of intensity of upper and lower limb training after stroke: a randomized trial. Br Med J 72(4):473

    Google Scholar 

  • Loureiro RCV, Harwin WS, Nagai K, Johnson M (2011) Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput 49(10):1103–1118

    Google Scholar 

  • Lewis GN, Perreault EJ (2009) An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. IEEE Trans Neural Syst Rehabil Eng 17(6):595–604

    Article  Google Scholar 

  • Lei R, David H, Laurence K (2006) Computational models to synthesize human walking. J Bionic Eng 3(3):127–138

    Article  Google Scholar 

  • Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Pharm.D Wagner TH, Krebs HI, Volpe BT, Bever CT, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362:1772–1783

    Google Scholar 

  • Lum PS, Burgar CG, Shor PC, Majmundar M, der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–959

    Article  Google Scholar 

  • Masiero S, Carraro E, Ferraro C, Gallina P, Rossi A, Rosati G (2009) Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J Rehabil Med 41(12):981–985

    Article  Google Scholar 

  • Merians A, Poizner H, Boian R (2006) Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 20(2):252–267

    Article  Google Scholar 

  • Moreno JC, Del Ama AJ, de Los Reyes-Guzmán A, Gil-Agudo A, Ceres R, Pons JL (2011) Neurorobotic and hybrid management of lower limb motor disorders: a review. Med Biol Eng Compu 49(10):1119–1130

    Article  Google Scholar 

  • Mohammed S, Amirat Y (2009) Towards intelligent lower limb wearable robots: challenges and perspectives–state of the art in Robotics and Biomimetics, 2008. ROBIO 2008. IEEE Int Conf 312–317. doi: 10.1109/ROBIO.2009.4913022

  • Madden JD (2007) Mobile robots: motor challenges and materials solutions. Science 318(5853):1094–1097

    Article  Google Scholar 

  • Morrow K, Docan C, Burdea G, Merians A (2006) Low-cost virtual rehabilitation of the hand for patients post-stroke in. Int Workshop Virtual Rehabil 2006:6–10

    Article  Google Scholar 

  • Mohammed S, Amirat Y (2008) Towards intelligent lower limb wearable robots: Challenges and perspectives–state of the art in IEEE Int Conf Robo Biomimetics (ROBIO) 312–317

    Google Scholar 

  • Meng Q, Lee MH (2006) Design issues for assistive robotics for the elderly. Adv Eng Inform 20(2):171–186

    Article  Google Scholar 

  • Norouzi-Gheidari N, Archambault PS, Fung J (2012) Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev 49(4):479–496

    Article  Google Scholar 

  • Pennycott A, Ureta V, Wyss D, Vallery H, Klamroth-Marganska V, Riener R (2012) Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil 9(65)

    Google Scholar 

  • Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Mag 29(3):57–63

    Article  Google Scholar 

  • Pons JLJ (2008) Wearable robots: biomechatronic exoskeletons. Wiley, p 338

    Google Scholar 

  • Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Compu 43(1):2–10

    Article  Google Scholar 

  • Reinkensmeyer DJ (2011) How might robots and information technology be used? Topics in Spinal Cord Injury Rehabili 17(1):82–85

    Article  Google Scholar 

  • Reinkensmeyer DJ, Emken JL, Cramer SC (2004) Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng 6(1):497–525

    Article  Google Scholar 

  • Rocon E, Pons JL (2011) Exoskeletons in rehabilitation robotics, vol 69. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  • Reinkensmeyer DJ, Boninger ML (2012) Technologies and combination therapies for enhancing movement training for people with a disability. J Neuro Eng Rehabil 9(1):17

    Article  Google Scholar 

  • Reinkensmeyer D, Patton J (2009) Can robots help the learning of skilled actions? Exerc Sport Sci Rev 37(1):43–51

    Article  Google Scholar 

  • Salter T, Dautenhahn K, Te Boekhorst R (2006) Learning about natural human–robot interaction styles. Rob Auton Syst 54(2):127–134

    Article  Google Scholar 

  • Swinnen E, Duerinck S, Baeyens J-PP, Meeusen R, Kerckhofs E (2010) Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. J Rehabil Med 42(6):520–526

    Article  Google Scholar 

  • Scherer M, Jutai J, Fuhrer M, Demers L, Deruyter F (2007) A framework for modelling the selection of assistive technology devices (ATDs). Disabil Rehabil: Assistive Technol 2(1):1–8

    Article  Google Scholar 

  • Scherer MJ, Sax C, Vanbiervliet A, Cushman LA, Scherer JV (2005) Predictors of assistive technology use: The importance of personal and psychosocial factors. Disabil Rehabil: Assistive Technol 27(21):1321–1331

    Google Scholar 

  • Shin D-H, Choo H (2011) Modeling the acceptance of socially interactive robotics: Social presence in human–robot interaction. Interact Stud 12(3):430–460

    Article  Google Scholar 

  • Schück A, Labruyère R, Vallery H, Riener R, Duschau-Wicke A (2012) Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J Neuro Eng Rehabil 9(1):31

    Article  Google Scholar 

  • Sørensen HV, Lendal S, Schultz-Larsen K, Uhrskov T (2003) Stroke rehabilitation: assistive technology devices and environmental modifications following primary rehabilitation in hospital–a therapeutic perspective. Assistive Technol 15(1):39–48

    Article  Google Scholar 

  • Staubli P, Nef T, Klamroth-Marganska V, Riener R (2009) Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuro Eng Rehabil 6:46

    Article  Google Scholar 

  • Van de Crommert HW, Mulder T, Duysens J (1998) Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7(3):251–263

    Article  Google Scholar 

  • van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085):1182–1185

    Article  Google Scholar 

  • Wessels M, Lucas C, Eriks I, de Groot S (2010) Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med 42(6):513–519

    Article  Google Scholar 

  • Wagner TH, Lo AC, Peduzzi P, Bravata DM, Huang GD, Krebs HI, Ringer RJ, Federman DG, Richards LG, Haselkorn JK, Wittenberg GF, Volpe BT, Bever CT, Duncan PW, Siroka A, Guarino PD (2011) An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke 42(9):2630–2632

    Article  Google Scholar 

  • Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):286–297

    Article  Google Scholar 

  • Wolfe DL, Hsieh JTC, Mehta S, Teasel IR, Miller, W Wolfe D, Townson A, Hsieh J, Connolly S, Mehta S, Sakakibara B (2010) Rehabilitation practices and associated outcomes following spinal cord injury in Spinal Cord Inj Rehabil Evid. Version 3 J. Eng (ed)

    Google Scholar 

  • Waldner A, Tomelleri C, Hesse S (2009) Transfer of scientific concepts to clinical practice: recent robot-assisted training studies. Funct Neurol 24(4):173–177

    Google Scholar 

  • Zecca M, Endo N, Momoki S (2008) Design of the humanoid robot KOBIAN-preliminary analysis of facial and whole body emotion expression capabilities in 8th IEEE-RAS Int Conf Humanoid Rob 33–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. del-Ama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

del-Ama, A.J., Cuesta, A., Rajasekaran, V., Trincado, F., In, H., Reinkensmeyer, D. (2014). Robotic Rehabilitation: Ten Critical Questions about Current Status and Future Prospects Answered by Emerging Researchers. In: Pons, J., Torricelli, D. (eds) Emerging Therapies in Neurorehabilitation. Biosystems & Biorobotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38556-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38556-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38555-1

  • Online ISBN: 978-3-642-38556-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics