Skip to main content

Transposable Elements and Their Activities in Y. lipolytica

  • Chapter
  • First Online:
Yarrowia lipolytica

Part of the book series: Microbiology Monographs ((MICROMONO,volume 24))

Abstract

Y. lipolytica harbors an unusually diverse set of transposable elements among Saccharomycotina yeasts. Among them, members of both the families of transposons, retrotransposons as well as DNA transposons, are represented. Two of the LTR retrotransposons, Ylt1 and Tyl6, are members of the Ty3/gypsy group but have some uncommon features. Ylt1 is the largest hitherto detected fungal retrotransposon and is, in contrast to the other transposons, present in a high copy number of about 35 copies/haploid genome. Its proteins are encoded by a single ORF expressed under certain conditions resulting in transposition. Tyl6 is the only one retrotransposon among Saccharomycotina yeasts which displays a program −1 ribosomal frameshifting. The LINE-like element Ylli is also unique among Saccharomycotina yeasts and forms with the C. albicans counterparts Zorro 1,2,3 a new family. It belongs to the L1 clade, which also contains the human LINEs. Like these element, the large majority of the Ylli copies are 5′ truncated, the characteristics of Ylli being that its copies are very short. The detected DNA transposon Mutator of Y. lipolytica (Mutyl) shares some similarities with several MULE elements found mainly in plants and in fungi. It is the first described DNA transposon in Saccharomycotina yeasts and like many of its counterparts, it may have invaded its host through horizontal transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LINE:

Long interspersed elements

LTR:

Long terminal repeat

RT:

Reverse transcriptase

SINE:

Short interspersed elements

TIR:

Terminal inverted repeats

TSD:

Target site duplication

References

  • Babushok DV, Kazazian HHJ (2007) Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 28:527–539

    Article  PubMed  CAS  Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  PubMed  CAS  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18:343–358

    Article  PubMed  CAS  Google Scholar 

  • Bon E, Neuveglise C, Lepingle A, Wincker P, Artiguenave F, Gaillardin C, Casaregola S (2000) Genomic exploration of the hemiascomycetous yeasts: 6. Saccharomyces exiguus. FEBS Lett 487:42–46

    Article  PubMed  CAS  Google Scholar 

  • Burns KH, Boeke JD (2008) Great exaptations. J Biol 7:5

    Article  PubMed  Google Scholar 

  • Casaregola S, Neuveglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487:95–100

    Article  PubMed  CAS  Google Scholar 

  • Casaregola S, Neuveglise C, Bon E, Gaillardin C (2002) Ylli, a non-LTR retrotransposon L1 family in the dimorphic yeast Yarrowia lipolytica. Mol Biol Evol 19:664–677

    Article  PubMed  CAS  Google Scholar 

  • Chalker DL, Sandmeyer SB (1992) Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev 6:117–128

    Article  PubMed  CAS  Google Scholar 

  • Chalker DL, Sandmeyer SB (1993) Sites of RNA polymerase III transcription initiation and Ty3 integration at the U6 gene are positioned by the TATA box. Proc Natl Acad Sci USA 90:4927–4931

    Article  PubMed  CAS  Google Scholar 

  • Covey SN (1986) Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res 14:623–633

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Poulter RT, Han JS (2009) LINE-like retrotransposition in Saccharomyces cerevisiae. Genetics 181:301–311

    Article  PubMed  CAS  Google Scholar 

  • Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet 22:375–387

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Dunn BM, Goodenow MM, Gustchina A, Wlodawer A (2002) Retroviral proteases. Genome Biol 3:reviews3006.1–3006.7

    Article  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF (2003) Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA 9:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TJ, Poulter RT (2000) Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res 10:174–191

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TJ, Poulter RT (2001) The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18:865–880

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TJ, Ormandy JE, Poulter RT (2001) L1-like non-LTR retrotransposons in the yeast Candida albicans. Curr Genet 39:83–91

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TJ, Busby JN, Poulter RT (2007) A yeast model for target-primed (non-LTR) retrotransposition. BMC Genomics 8:263

    Article  PubMed  Google Scholar 

  • Grund SE, Fischer T, Cabal GG, Antunez O, Perez-Ortin JE, Hurt E (2008) The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J Cell Biol 182:897–910

    Article  PubMed  CAS  Google Scholar 

  • Hani J, Feldmann H (1998) tRNA genes and retroelements in the yeast genome. Nucleic Acids Res 26:689–696

    Article  PubMed  CAS  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    Article  PubMed  Google Scholar 

  • Higashiyama T, Noutoshi Y, Fujie M, Yamada T (1997) Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16:3715–3723

    Article  PubMed  CAS  Google Scholar 

  • Hoebeke M, Schbath S (2006) R’MES: finding exceptional motifs, version 3. User guide. http://genome.jouy.inra.fr/ssb/rmes

  • Juneau K, Nislow C, Davis RW (2009) Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183:185–194

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    PubMed  CAS  Google Scholar 

  • Knutsen AK, Robert V, Poot GA, Epping W, Figge M, Holst-Jensen A, Skaar I, Smith MT (2007) Polyphasic re-examination of Yarrowia lipolytica strains and the description of three novel Candida species: Candida oslonensis sp. nov., Candida alimentaria sp. nov. and Candida hollandica sp. nov. Int J Syst Evol Microbiol 57:2426–2435

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk A (2005) Molecular analysis of the LTR retrotransposon Ylt1 from the genome of the dimorphic fungus Yarrowia lipolytica. PhD Thesis, Technische Universität Dresden

    Google Scholar 

  • Kovalchuk A, Senam S, Mauersberger S, Barth G (2005) Tyl6, a novel Ty3/gypsy-like retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica. Yeast 22:979–991

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  PubMed  CAS  Google Scholar 

  • Louis VL, Despons L, Friedrich A, Martin T, Durrens P, Casarégola S, Neuvéglise C, Fairhead C, Marck C, Cruz JA, Straub ML, Kugler V, Sacerdot C, Uzunov Z, Thierry A, Weiss S, Bleykasten C, De Montigny J, Jacques N, Jung P, Lemaire M, Mallet S, Morel G, Richard GF, Sarkar A, Savel G, Schacherer J, Seret ML, Talla E, Samson G, Jubin C, Poulain J, Vacherie B, Barbe V, Pelletier E, Sherman DJ, Westhof E, Weissenbach J, Baret PV, Wincker P, Gaillardin C, Dujon B, Souciet JL (2012) Pichia sorbitophila, an interspecies yeast hybrid, reveals early steps of genome resolution after polyploidization. G3 (Bethesda) 2:299–311

    Article  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/gypsy class of LTR retrotransposons. J Virol 73:5186–5190

    PubMed  CAS  Google Scholar 

  • Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805

    Article  PubMed  CAS  Google Scholar 

  • Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE, Swergold GD, Henke J, Henke L, Moran JV, Jorde LB, Batzer MA (2002) A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet 71:312–326

    Article  PubMed  CAS  Google Scholar 

  • Neuveglise C, Solano-Serena F, Brignon P, Gendre F, Gaillardin C, Casaregola S (2000) Homologous recombination and transposition generate chromosome I neopolymorphism during meiosis in Saccharomyces cerevisiae. Mol Gen Genet 263:722–732

    Article  PubMed  CAS  Google Scholar 

  • Neuveglise C, Feldmann H, Bon E, Gaillardin C, Casaregola S (2002) Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Genome Res 12:930–943

    Article  PubMed  CAS  Google Scholar 

  • Neuveglise C, Chalvet F, Wincker P, Gaillardin C, Casaregola S (2005) Mutator-like element in the yeast Yarrowia lipolytica displays multiple alternative splicings. Eukaryot Cell 4:615–624

    Article  PubMed  CAS  Google Scholar 

  • Pavlicek A, Paces J, Zika R, Hejnar J (2002) Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene 300:189–194

    Article  PubMed  CAS  Google Scholar 

  • Raizada MN, Benito MI, Walbot V (2001) The MuDR transposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs. Plant J 25:79–91

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-dos-Santos G, Schenberg AC, Gardner DC, Oliver SG (1997) Enhancement of Ty transposition at the ADH4 and ADH2 loci in meiotic yeast cells. Mol Gen Genet 254:555–561

    Article  PubMed  CAS  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HHJ (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Berger N, Schmid B, Barth G (1994) Ylt1, a highly repetitive retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica. J Bacteriol 176:2477–2482

    PubMed  CAS  Google Scholar 

  • Senam S (2004) Molekulare Charakterisierung des Retrotransposons Ylt1 in der Hefe Yarrowia lipolytica. PhD Thesis, Technische Universität Dresden

    Google Scholar 

  • Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Segurens B, Artiguenave F, Anthouard V, Vacherie B, Val ME, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret ML, Casaregola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuveglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goeffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard GF, Sacerdot C, Straub ML, Talla E (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19:1696–1709

    Article  PubMed  Google Scholar 

  • Turkel S, Liao XB, Farabaugh PJ (1997) GCR1-dependent transcriptional activation of yeast retrotransposon Ty2-917. Yeast 13:917–930

    Article  PubMed  CAS  Google Scholar 

  • Werner K (2009) Studies on secretion of Gpr1 protein in Yarrowia lipolytica and of the Gpr1p orthologues in Saccharomyces cerevisiae. Diploma thesis, Technische Universität Dresden (in German)

    Google Scholar 

  • Xiong Y, Eickbush TH (1988) The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol 8:114–123

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S.C. thanks Christophe Ozanne for sharing unpublished results and the members of the Genolevures consortium for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Casaregola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casaregola, S., Barth, G. (2013). Transposable Elements and Their Activities in Y. lipolytica . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38320-5_3

Download citation

Publish with us

Policies and ethics