Skip to main content

Dietary Epigenetics in Cancer and Aging

  • Conference paper
  • First Online:
Advances in Nutrition and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 159))

Abstract

Although epigenetic aberrations frequently occur in aging and cancer and form a core component of these conditions, perhaps the most useful aspect of epigenetic processes is that they are readily reversible. Unlike genetic effects that also play a role in cancer and aging, epigenetic aberrations can be relatively easily corrected. One of the most widespread approaches to the epigenetic alterations in cancer and aging is dietary control. This can be achieved not only through the quality of the diet, but also through the quantity of calories that are consumed. Many phytochemicals such as sulforaphane from cruciferous vegetables and green tea have anticancer epigenetic effects and are also efficacious for preventing or treating the epigenetic aberrations of other age-associated diseases besides cancer. Likewise, the quantity of calories that are consumed has proven to be advantageous in preventing cancer and extending the lifespan through control of epigenetic mediators. The purpose of this chapter is to review some of the most recent advances in the epigenetics of cancer and aging and to provide insights into advances being made with respect to dietary intervention into these biological processes that have vast health implications and high translational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CR:

Caloric restriction

DNMT:

DNA methyltransferases

EGCG:

(-)-epigallocatechin-3-gallate

HAT:

Histone methyltransferases

HDAC:

Histone deacetylase

hTERT:

Human telomerase reverse transcriptase

miRNA:

microRNA

SAM:

S-adenosylmethionine

SFN:

Sulforaphane

siRNA:

Short-interfering RNA

SIRT1:

Sirtuin 1

References

  1. Barger JL, Kayo T, Vann JM et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3(6):e2264

    Article  PubMed  Google Scholar 

  2. Bass TM, Weinkove D, Houthoofd K et al (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128:546–552

    Article  PubMed  CAS  Google Scholar 

  3. Baylin SB, Herman JG, Graff JR et al (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  PubMed  CAS  Google Scholar 

  4. Berletch JB, Liu C, Love WK et al (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103:509–519

    Article  PubMed  CAS  Google Scholar 

  5. Casillas MA Jr, Lopatina N, Andrews LG et al (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252:33–43

    Article  PubMed  CAS  Google Scholar 

  6. Chen PN, Chu SC, Kuo WH et al (2011) Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells. J Agric Food Chem 59:3836–3844

    Article  PubMed  CAS  Google Scholar 

  7. Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23:289–296

    Article  PubMed  CAS  Google Scholar 

  8. Cohen HY, Miller C, Bitterman KJ et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  PubMed  CAS  Google Scholar 

  9. Colman RJ, Anderson RM, Johnson SC et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  10. Cruzen C, Colman RJ (2009) Effects of caloric restriction on cardiovascular aging in non-human primates and humans. Clin Geriatr Med 25:733–743

    Article  PubMed  Google Scholar 

  11. Daniel M, Peek GW, Tollefsbol TO (2012) Regulation of the human catalytic subunit of telomerase (hTERT). Gene 498:135–146

    Article  PubMed  CAS  Google Scholar 

  12. Dashwood RH, Ho E (2008) Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev 66(Suppl 1):S36–S38

    Article  PubMed  Google Scholar 

  13. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    Article  PubMed  CAS  Google Scholar 

  14. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  15. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  16. Fang MZ, Wang Y, Ai N et al (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    PubMed  CAS  Google Scholar 

  17. Guarente L, Picard F (2005) Calorie restriction–the SIR2 connection. Cell 120:473–482

    Article  PubMed  CAS  Google Scholar 

  18. Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3:503–518

    Article  PubMed  CAS  Google Scholar 

  19. Hass BS, Hart RW, Lu MH et al (1993) Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res 295:281–289

    Article  PubMed  CAS  Google Scholar 

  20. Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22:91–103

    Article  PubMed  CAS  Google Scholar 

  21. Holloszy JO, Fontana L (2007) Caloric restriction in humans. Exp Gerontol 42:709–712

    Article  PubMed  CAS  Google Scholar 

  22. Issa JP (1999) Aging, DNA methylation and cancer. Crit Rev Oncol Hematol 32:31–43

    Article  PubMed  CAS  Google Scholar 

  23. Issa JP (2008) Cancer prevention: epigenetics steps up to the plate. Cancer Prev Res (Phila) 1:219–222

    Article  CAS  Google Scholar 

  24. Kanfi Y, Peshti V, Gozlan YM et al (2008) Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett 582:2417–2423

    Article  PubMed  CAS  Google Scholar 

  25. Kim JW, Amin AR, Shin DM (2010) Chemoprevention of head and neck cancer with green tea polyphenols. Cancer Prev Res (Phila) 3:900–909

    Article  CAS  Google Scholar 

  26. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  27. Leibiger IB, Berggren PO (2006) Sirt1: a metabolic master switch that modulates lifespan. Nat Med 12:34–36

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Liu L, Andrews LG et al (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125:286–296

    Article  PubMed  CAS  Google Scholar 

  29. Li Y, Liu L, Tollefsbol TO (2010) Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J 24:1442–1453

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Tollefsbol TO (2011) p16(INK4a) suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS ONE 6:e17421

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98

    Article  PubMed  CAS  Google Scholar 

  32. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  PubMed  CAS  Google Scholar 

  33. Liu L, Wylie RC, Andrews LG et al (2003) Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 124:989–998

    Article  PubMed  CAS  Google Scholar 

  34. Lopatina N, Haskell JF, Andrews LG et al (2002) Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J Cell Biochem 84:324–334

    Article  PubMed  Google Scholar 

  35. Mathers JC (2006) Nutritional modulation of ageing: genomic and epigenetic approaches. Mech Ageing Dev 127:584–589

    Article  PubMed  CAS  Google Scholar 

  36. Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39

    Article  PubMed  Google Scholar 

  37. Mays-Hoopes LL (1989) DNA methylation in aging and cancer. J Gerontol 44:35–36

    Article  PubMed  CAS  Google Scholar 

  38. Meeran SM, Ahmed A, Tollefsbol TO (2010a) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1:101–116

    Article  CAS  Google Scholar 

  39. Meeran SM, Patel SN, Tollefsbol TO (2010b) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE 5(7):e11457

    Article  Google Scholar 

  40. Meeran SM, Patel SN, Li Y et al (2012) Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS ONE 7(5):e37748

    Google Scholar 

  41. Mittal A, Pate MS, Wylie RC et al (2004) EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. Int J Oncol 24:703–710

    PubMed  CAS  Google Scholar 

  42. Myzak MC, Tong P, Dashwood WM et al (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232:227–234

    CAS  Google Scholar 

  43. Nian H, Delage B, Ho E et al (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221

    Article  PubMed  CAS  Google Scholar 

  44. Poole JC, Andrews LG, Tollefsbol TO (2001) Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 269:1–12

    Article  PubMed  CAS  Google Scholar 

  45. Pugh TD, Oberley TD, Weindruch R (1999) Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases lifespan and lifetime cancer incidence in mice. Cancer Res 59:1642–1648

    PubMed  CAS  Google Scholar 

  46. Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3:34–42

    PubMed  CAS  Google Scholar 

  47. Schwab M, Reynders V, Loitsch S et al (2008) The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology 125(2):241–251

    Article  PubMed  CAS  Google Scholar 

  48. Shanmugam MK, Kannaiyan R, Sethi G (2011) Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer 63:161–173

    Article  PubMed  CAS  Google Scholar 

  49. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002

    Article  PubMed  CAS  Google Scholar 

  50. Su LJ, Mahabir S, Ellison GL et al (2011) Epigenetic contributions to the relationship between cancer and dietary intake of nutrients, bioactive food components, and environmental toxicants. Front Genet 2:91

    PubMed  Google Scholar 

  51. Subramanian L, Youssef S, Bhattacharya S et al (2010) Resveratrol: challenges in translation to the clinic–a critical discussion. Clin Cancer Res 16:5942–5948

    Article  PubMed  CAS  Google Scholar 

  52. Sun D, Krishnan A, Su J, Lawrence R et al (2004) Regulation of immune function by calorie restriction and cyclophosphamide treatment in lupus-prone NZB/NZW F1 mice. Cell Immunol 228:54–65

    Article  PubMed  CAS  Google Scholar 

  53. Weindruch R, Walford RL, Fligiel S et al (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    PubMed  CAS  Google Scholar 

  54. Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Cancer Institute (RO1 CA129415), the American Institute for Cancer Research, and the Norma Livingston Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trygve O. Tollefsbol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tollefsbol, T.O. (2014). Dietary Epigenetics in Cancer and Aging. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics