Skip to main content

Drug Discovery by Targeting Protein–Protein Interactions

  • Chapter
  • First Online:
Disruption of Protein-Protein Interfaces

Abstract

For many years, drug discovery’s main interest has focused on protein–ligand interactions, such as enzyme inhibition or transmembrane receptor modulation. Drug discovery approaches were based on endogenous ligand knowledge as starting point for small molecule target modulation. This approach allowed the identification of small molecules with good ADMET profile thanks to the elaboration of best practices together with the development of high-throughput technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244

    Article  CAS  Google Scholar 

  2. De S, Krishnadev O, Srinivasan N, Rekha N (2005) Interaction preferences across protein–protein interfaces of obligatory and non-obligatory components are different. BMC Struct Biol 5:15

    Article  Google Scholar 

  3. Tsai C, Ma B, Nussinov R (2009) Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600

    Article  CAS  Google Scholar 

  4. Zinzalla G, Thurston DE (2009) Targeting protein–protein interactions for therapeutic intervention: a challenge for the future. Future Med Chem 1:65–93

    Article  CAS  Google Scholar 

  5. Sperandio O, Reynès CH, Camproux AC, Villoutreix BO (2010) Rationalizing the chemical space of protein–protein interaction inhibitors. Drug Discovery Today 15(5/6):220–229

    Article  CAS  Google Scholar 

  6. Chène P (2006) Drugs targeting protein–protein interactions. ChemMedChem 1:400–411

    Article  Google Scholar 

  7. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525

    Article  CAS  Google Scholar 

  8. Zhao N, Pang B, Shyu C, Korkin D (2011) Structural similarity and classification of protein interaction interfaces. PlosOne, 6, e19554:1–14

    Google Scholar 

  9. Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites at the protein–protein interface. Drug Discovery Today 14(3/4):155–161

    Article  CAS  Google Scholar 

  10. Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus KH, Gohlke H (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein–protein interface. J Chem Inf Model 52:120–133

    Article  CAS  Google Scholar 

  11. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discovery 3:301–317

    Article  CAS  Google Scholar 

  12. Petschnigg J, Snider J, Stagljar I (2011) Interactive proteomics research technologies: recent applications and advances. Curr Opin Biotechnol 22:50–58

    Article  CAS  Google Scholar 

  13. Macchiarulo A, Giacchè N, Carotti A, Baroni M, Cruciani G, Pellicciari R (2008) Targeting the conformational transitions of MDM2 and MDMX: insights into dissimilarities and similarities of p53 recognition. J Chem Inf Model 48:1999–2009

    Article  CAS  Google Scholar 

  14. Hajduk PJ, Huth JR, Tse C (2005) Predicting Protein Druggability. Drug Discovery Today 10:1675–1682

    Article  CAS  Google Scholar 

  15. Diller DJ, Hobbs DW (2004) Deriving knowledge through data mining high-throughput screening data. J Med Chem 47:6373–6383

    Article  CAS  Google Scholar 

  16. Zapatero CA (2007) Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discovery 2:469–488

    Article  Google Scholar 

  17. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450:1001–1009

    Article  CAS  Google Scholar 

  18. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  19. Mason JM (2010) Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. Future Med Chem 2:1813–1822

    Article  CAS  Google Scholar 

  20. Rubinstein M, Niv MY (2009) Peptidic modulators of protein–protein interactions: progress and challenges in computational design. Biopolymers 91:505–513

    Article  CAS  Google Scholar 

  21. Ullman CG, Frigotto L, Cooley RN (2011) In vitro methods for peptide display and their applications. Briefings Funct Genom 10:125–134

    Article  CAS  Google Scholar 

  22. Kessler H (1982) Conformation and biological activity of cyclic peptides. Angew Chem Int Ed Engl 21(7):512–523

    Article  Google Scholar 

  23. Henchey LK, Jochim AL, Arora PS (2008) Contemporary strategies for the stabilization of peptides in the a-helical conformation. Curr Opin Chem Biol 12:692–697

    Article  CAS  Google Scholar 

  24. Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions. Angew Chem Int Ed 44:4130–4163

    Article  CAS  Google Scholar 

  25. Blazer LL, Neubig RR (2009) Small molecule protein–protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34:126–141

    Article  CAS  Google Scholar 

  26. Fry DC, Vassilev LT (2005) Targeting protein–protein interactions for cancer therapy. J Mol Med 83:955–963

    Article  CAS  Google Scholar 

  27. Aisen PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D (2006) A phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology 67:1757–1763

    Article  CAS  Google Scholar 

  28. Rafii MS, Aisen PS (2009) Recent developments in Alzheimers disease therapeutics. BMC Medicine 7:7

    Article  Google Scholar 

  29. Bolognesi ML, Cavalli A, Melchiorre C (2009) Memoquin: A multi-target–directed ligand as an innovative therapeutic opportunity for Alzheimers disease. Neurotherapeutics 6:152–162

    Article  CAS  Google Scholar 

  30. Gestwicki JE, Crabtree GR, Graef IA (2004) Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 306:865–869

    Article  CAS  Google Scholar 

  31. Ryan DP, Matthews JM (2005) Protein–protein interactions in human disease. Curr Opin Struct Biol 15:441–446

    Article  CAS  Google Scholar 

  32. Neubig RR, Siderovski DP (2002) Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discovery 1:187–197

    Article  CAS  Google Scholar 

  33. Popowicz GM, Dömling A, Holak TA (2011) The structure-based design of Mdm2/MDMX–p53 inhibitors gets serious. Angew Chem Int Ed 50:2680–2688

    Article  CAS  Google Scholar 

  34. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    Article  CAS  Google Scholar 

  35. Popowicz GM, Czarna A, Rothweiler U, Szwagierczak A, Krajewski M, Weber L, Holak TA (2007) Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle 6:2386–2392

    Article  CAS  Google Scholar 

  36. Vassilev LT (2005) p53 activation by small molecules: application in oncology. J Med Chem 48:4491–4499

    Article  CAS  Google Scholar 

  37. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  Google Scholar 

  38. Ohnstad HO, Paulsen EB, Noordhuis P, Berg M, Lothe RA, Vassilev LT, Myklebost O (2011) MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines. BMC Cancer 11:211–239

    Article  CAS  Google Scholar 

  39. Brennan RC, Federico S, Bradley C, Zhang J, Flores-Otero J, Wilson M, Stewart CF, Zhu F, Guy K, Dyer MA (2011) Targeting the p53 pathway in Retinoblastoma with subconjunctival Nutlin-3a. Cancer Res 71:4205–4213

    Article  CAS  Google Scholar 

  40. Tabe Y, Sebasigari D, Jin L, Rudelius M, Davies-Hill T, Miyake K, Miida T, Pittaluga S, Raffeld M (2009) MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res 15:933–942

    Article  CAS  Google Scholar 

  41. Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, McEachern D, Qiu S, Nikolovska-Coleska Z, Miller R, Kang S, Yang D, Wang S (2009) Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 52:7970–7973

    Article  CAS  Google Scholar 

  42. Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, Maguire D, Lattanze J, Franks CF, Zhao S, Ramachandren K, Bylebyl GR, Zhang M, Manthey CL, Petrella EC, Pantoliano MW, Deckman IC, Spurlino JC, Maroney AC, Tomczuk BE, Molloy CJ, Bone RF (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in Cells. J Med Chem 48:909–912

    Article  CAS  Google Scholar 

  43. Hardcastle IR, Liu J, Valeur E, Watson A, Ahmed SU, Blackburn TJ, Bennaceur K, Clegg W, Drummond C, Endicott JA, Golding BT, Griffin RJ, Gruber J, Haggerty K, Harrington RW, Hutton C, Kemp S, Lu X, McDonnell JM, Newell DR, Noble MEM, Payne SL, Revill CH, Riedinger C, Xu Q, Lunec J (2011) Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein–protein interaction: structure-activity studies leading to improved potency. J Med Chem 54:1233–1243

    Article  CAS  Google Scholar 

  44. Riedinger C, Endicott JA, Kemp SJ, Smyth LA, Watson A, Valeur E, Golding BT, Griffin RJ, Hardcastle IR, Noble ME, McDonnell JM (2008) Analysis of chemical shift changes reveals the binding modes of isoindolinone inhibitors of the MDM2-p53 interaction. J Am Chem Soc 130:16038–16044

    Article  CAS  Google Scholar 

  45. Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Dömling A, Holak TA (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9:1104–1111

    Article  CAS  Google Scholar 

  46. Czarna A, Popowicz GM, Pecak A, Wolf S, Dubin G, Holak TA (2009) High affinity interaction of the p53 peptide-analogue with human Mdm2 and MDMX. Cell Cycle 8:1176–1184

    Article  CAS  Google Scholar 

  47. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129:2456–2457

    Article  CAS  Google Scholar 

  48. Sakurai K, Chung HS, Kahne D (2004) Use of a retroinverso p53 peptide as an inhibitor of MDM2. J Am Chem Soc 126:16288–16289

    Article  CAS  Google Scholar 

  49. Li C, Pazgier M, Li J, Li C, Liu M, Zou G, Li Z, Chen J, Tarasov SG, Lu WY, Lu W (2010) Limitations of peptide retro-inverso isomerization in molecular mimicry. J Biol Chem 285:19572–19581

    Article  CAS  Google Scholar 

  50. Sleebs BE, Czabotar PE, Fairbrother WJ, Fairlie WD, Flygare JA, Huang DCS, Kersten WJA, Koehler MFT, Lessene G, Lowes K, Parisot JP, Smith BJ, Smith ML, Souers AJ, Street IP, Yang H, Baell JB (2011) Quinazoline Sulfonamides as dual binders of the proteins B-Cell Lymphoma 2 and B-Cell Lymphoma extra long with potent proapoptotic cell-based activity. J Med Chem 54:1914–1926

    Article  CAS  Google Scholar 

  51. Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DCS, Day CL (2007) Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ 14:128–136

    Article  CAS  Google Scholar 

  52. Reed JC, Zha H, Aime-Sempe C, Takayama S, Wang HG (1996) Structure-function analysis of Bcl-2 family proteins, Regulators of programmed cell death. Adv Exp Med Biol 406:99–112

    Article  CAS  Google Scholar 

  53. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  Google Scholar 

  54. Gandhi L, Camidge DR, de Oliveira MR, Bonomi P, Gandara D, Khaira D, Hann CL, McKeegan EM, Litvinovich E, Hemken PM, Dive C, Enschede SH, Nolan C, Chiu Y, Busman T, Xiong H, Krivoshik AP, Humerickhouse R, Shapiro GI, Rudin CM (2011) Phase I study of navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 29:909–916

    Article  CAS  Google Scholar 

  55. Baggstrom MQ, Qi Y, Koczywas M, Argiris A, Johnson EA, Millward MJ, Murphy SC, Erlichman C, Rudin CM, Govindan R (2011) Mayo Phase 2 Consortium, California Consortium: A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thoracic Oncol 6:1757–1760

    Article  Google Scholar 

  56. Stewart ML, Fire E, Keating AE, Walensky LD (2010) The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 6:595–601

    Article  CAS  Google Scholar 

  57. Berg T (2008) Small-molecule inhibitors of protein–protein interactions. Curr Opin Drug Discov Dev 11:666–674

    CAS  Google Scholar 

  58. Rajapakse H (2007) Small molecule inhibitors of the XIAP protein–protein interaction. Curr Top Med Chem 7:966–971

    Article  CAS  Google Scholar 

  59. Houslay MD (2009) Disrupting specific PDZ domain-mediated interactions for therapeutic benefit. Br J Pharmacol 158:483–485

    Article  CAS  Google Scholar 

  60. Grandy D, Shan J, Zhang X, Rao S, Akunuru S, Li H, Zhang Y, Alpatov I, Zhang XA, Lang RA, Shi DL, Zheng JJ (2009) Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem 284:16256–16263

    Article  CAS  Google Scholar 

  61. Fujii N, You L, Xu Z, Uematsu K, Shan J, He B, Mikami I, Edmondson LR, Neale G, Zheng J, Guy RK, Jablons DM (2007) An antagonist of dishevelled protein–protein interaction suppresses β-Catenin–dependent tumor cell growth. Cancer Res 67:573–579

    Article  CAS  Google Scholar 

  62. Poon E, Harrisa AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    Article  Google Scholar 

  63. Park EJ, Kong D, Fisher R, Cardellina J, Shoemaker RH, Melillo G (2006) Targeting the PAS-A domain of HIF-1a for development of small molecule inhibitors of HIF-1. Cell Cycle 5(16):1847–1853

    Article  CAS  Google Scholar 

  64. Arkin M (2005) Protein–protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol 9:317–324

    Article  CAS  Google Scholar 

  65. Hadaschik BA (2008) Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlin. Int J Cancer 122:2368–2376

    Article  CAS  Google Scholar 

  66. Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, Chang YL, Chen LT, Chen CT, Chang JY (2004) BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res 64:4621–4628

    Article  CAS  Google Scholar 

  67. Takayama T, Shiozaki H, Shibamoto S, Oka H, Kimura Y, Tamura S, Inoue M, Monden T, Ito F, Monden M (1996) Beta-catenin expression in human cancers. Am J Pathol 148:39–46

    CAS  Google Scholar 

  68. Trosset J, Dalvit C, Knapp S, Fasolini M, Veronesi M, Mantegani S, Gianellini LM, Catana C, Sundström M, Stouten PFW, Moll JK (2006) Inhibition of protein–protein interactions: the discovery of druglike β-catenin inhibitors by combining virtual and biophysical screening. Proteins: Struct Funct Bioinf 64:60–67

    Article  CAS  Google Scholar 

  69. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  CAS  Google Scholar 

  70. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188

    Article  CAS  Google Scholar 

  71. Sticht J, Humbert M, Findlow S, Bodem J, Müller B, Dietrich U, Werner J, Kräusslich HG (2005) A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 12:671–677

    Article  CAS  Google Scholar 

  72. Ternois F, Sticht J, Duquerroy S, Krausslich HG, Rey FA (2005) The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 12:678–682

    Article  CAS  Google Scholar 

  73. Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A, Heck S, Curreli F, Goger M, Cowburn D, Freed EO, Debnath AK (2008) A Cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 378:565–580

    Article  CAS  Google Scholar 

  74. Bhattacharya S, Zhang H, Debnath AK, Cowburn D (2008) Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 283:16274–16278

    Article  CAS  Google Scholar 

  75. Markowitz J, Chen I, Gitti R, Baldisseri DM, Pan Y, Udan R, Carrier F, MacKerell AD, Weber DJ (2004) Identification and characterization of small molecule inhibitors of the calcium-dependent S100B–p53 tumor suppressor interaction. J Med Chem 47:5085–5093

    Article  CAS  Google Scholar 

  76. Markowitz J, MacKerell AD, Weber DJ (2007) A Search for inhibitors of S100B, a member of the S100 family of calcium-binding proteins. Mini-Rev Med Chem 7:609–616

    Article  CAS  Google Scholar 

  77. Charpentier TH, Wilder PT, Liriano MA, Varney KM, Zhong S, Coop A, Pozharski E, MacKerell AD, Toth EA, Weber DJ (2009) Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry 48:6202–6212

    Article  CAS  Google Scholar 

  78. Arendt Y, Bhaumik A, Del Conte R, Luchinat C, Mori M, Porcu M (2007) Fragment docking to S100 proteins reveals a wide diversity of weak interaction sites. ChemMedChem 2:1648–1654

    Article  CAS  Google Scholar 

  79. Agamennone M, Cesari L, Lalli D, Turlizzi E, Del Conte R, Turano P, Mangani S, Padova A (2010) Fragmenting the S100B–p53 interaction: combined virtual/biophysical screening approaches to identify ligands. ChemMedChem 5:428–435

    Article  CAS  Google Scholar 

  80. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    Article  CAS  Google Scholar 

  81. Ireton RC, Chen J (2005) EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets 5:149–157

    Article  CAS  Google Scholar 

  82. Giorgio C, Mohamed IH, Flammini L, Barocelli E, Incerti M, Lodola A, Tognolini M (2011) Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One, 6, e18128

    Google Scholar 

  83. Noren NK, Pasquale EB (2007) Paradoxes of the EphB4 receptor in cancer. Cancer Res 67:3994–3997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Padova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bettinetti, L., Magnani, M., Padova, A. (2013). Drug Discovery by Targeting Protein–Protein Interactions. In: Mangani, S. (eds) Disruption of Protein-Protein Interfaces. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37999-4_1

Download citation

Publish with us

Policies and ethics