Skip to main content

Visualizing Myeloarchitecture In Vivo with Magnetic Resonance Imaging in Common Marmosets (Callithrix jacchus)

  • Chapter
  • First Online:
Microstructural Parcellation of the Human Cerebral Cortex

Abstract

This Chapter details the visualization of myeloarchitecture in vivo in small New World monkeys (common marmosets – Callithrix jacchus) using magnetic resonance imaging (MRI). The features of myeloarchitecture in marmosets are well described from traditional histology studies; here we use very high resolution MRI (160 μm isotropic) to visualize these features in living animals. Following processing, our images show the complete pattern of myelin content over the marmoset cortex, revealing the size, location, and spatial relationship between regions including the primary auditory, somatosensory, and visual regions, and visually-associated areas including the middle temporal and dorsomedial regions. For morphological studies, the surface areas of regions can be computed for individual animals, which in this Chapter reveals the large proportion of the marmoset cortex dedicated to vision. Finally, digital flattening of the surface further reveals fine details in the myeloarchitecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ (2003) Aspects of common marmoset basic biology and life history important for biomedical research. Comp Med 53(4):339–350

    PubMed  CAS  Google Scholar 

  • Aitkin L, Park V (1993) Audition and the auditory pathway of a vocal New World primate, the common marmoset. Prog Neurobiol 41(3):345–367

    Article  PubMed  CAS  Google Scholar 

  • Annese J, Pitiot A, Dinov ID, Toga AW (2004) A myelo-architectonic method for the structural classification of cortical areas. Neuroimage 21(1):15–26

    Article  PubMed  CAS  Google Scholar 

  • Barbier E, Marrett S, Danek A, Vortmeyer A, Van GP, Duyn J, Bandettini P, Grafman J, Koretsky A (2002) Imaging cortical anatomy by high-resolution MR at 3.0 T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48(4):735–738

    Article  PubMed  Google Scholar 

  • Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436(7054):1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Bihel E, Pro-Sistiaga P, Letourneur A, Toutain J, Saulnier R, Insausti R, Bernaudin M, Roussel S, Touzani O (2010) Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations. J Cereb Blood Flow Metab 30(2):273–285

    Article  PubMed  Google Scholar 

  • Bihel E, Roussel S, Toutain J, Bernaudin M, Touzani O (2011) Diffusion tensor MRI reveals chronic alterations in white matter despite the absence of a visible ischemic lesion on conventional MRI: a nonhuman primate study. Stroke 42(5):1412–1419

    Article  PubMed  Google Scholar 

  • Blezer ELA, Bauer J, Brok HPM, Nicolay K, ’t Hart BA (2007) Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed 20(2):90–103

    Article  PubMed  Google Scholar 

  • Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185(1):15–22

    Article  PubMed  Google Scholar 

  • Bock NA, Hashim E, Kocharyan A, Silva AC (2011) Visualizing myeloarchitecture with magnetic resonance imaging in primates. Ann N Y Acad Sci 1225(Suppl 1):E171–E181

    Article  PubMed  Google Scholar 

  • Bourne JA, Warner CE, Upton DJ, Rosa MGP (2007) Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 500(5):832–849

    Article  PubMed  CAS  Google Scholar 

  • Bridge H, Clare S (2006) High-resolution MRI: in vivo histology? Philos Trans R Soc Lond B Biol Sci 361(1465):137–146

    Article  PubMed  Google Scholar 

  • Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Matthews PM (2005) Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vis 5(2):93–102

    Article  PubMed  Google Scholar 

  • Burish MJ, Stepniewska I, Kaas JH (2008) Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus). J Comp Neurol 507(2):1151–1168

    Article  PubMed  Google Scholar 

  • Burman KJ, Rosa MGP (2009) Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J Comp Neurol 514(1):11–29

    Article  PubMed  Google Scholar 

  • Burman KJ, Palmer SM, Gamberini M, Rosa MGP (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495(2):149–172

    Article  PubMed  Google Scholar 

  • Burman KJ, Lui LL, Rosa MGP, Bourne JA (2007) Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. Eur J Neurosci 25(6):1767–1779

    Article  PubMed  Google Scholar 

  • Burman KJ, Palmer SM, Gamberini M, Spitzer MW, Rosa MGP (2008) Anatomical and physiological definition of the motor cortex of the marmoset monkey. J Comp Neurol 506(5):860–876

    Article  PubMed  Google Scholar 

  • Carmichael DW, Thomas DL, De Vita E, Fernández-Seara MA, Chhina N, Cooper M, Sunderland C, Randell C, Turner R, Ordidge RJ (2006) Improving whole brain structural MRI at 4.7 Tesla using 4 irregularly shaped receiver coils. Neuroimage 32(3):1176–1184

    Article  PubMed  Google Scholar 

  • Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2(5):417–424

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298(2):188–214

    Article  PubMed  CAS  Google Scholar 

  • de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496(1):27–71

    Article  PubMed  Google Scholar 

  • Diem R, Demmer I, Boretius S, Merkler D, Schmelting B, Williams SK, Sättler MB, Bähr M, Michaelis T, Frahm J, Brück W, Fuchs E (2008) Autoimmune optic neuritis in the common marmoset monkey: comparison of visual evoked potentials with MRI and histopathology. Invest Ophthalmol Vis Sci 49(8):3707–3714

    Article  PubMed  Google Scholar 

  • Eickhoff S, Walters NB, Schleicher A, Kril J, Egan GF, Zilles K, Watson JDG, Amunts K (2005) High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24(3):206–215

    Article  PubMed  Google Scholar 

  • Eliades SJ, Wang X (2008) Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453(7198):1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Eslamboli A (2005) Marmoset monkey models of Parkinson’s disease: which model, when and why? Brain Res Bull 68(3):140–149

    Article  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Benedict RHB, Deluca J, Geurts JJG, Rombouts SARB, Ron M, Comi G (2010) The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 75(23):2121–2128

    Article  PubMed  CAS  Google Scholar 

  • Fritsches KA, Rosa MG (1996) Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus). J Comp Neurol 372(2):264–282

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga M, Li T, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci USA 107(8):3834–3839

    Article  PubMed  CAS  Google Scholar 

  • Gennari F (1782) De Peculiari Structura Cerebri. Nonnullisque ejus morbis. Ex Regio Typographeo, Parma

    Google Scholar 

  • Gorrie CA, Waite PME, Rogers LJ (2008) Correlations between hand preference and cortical thickness in the secondary somatosensory (SII) cortex of the common marmoset, Callithrix jacchus. Behav Neurosci 122(6):1343–1351

    Article  PubMed  Google Scholar 

  • Hikishima K, Quallo MM, Komaki Y, Yamada M, Kawai K, Momoshima S, Okano HJ, Sasaki E, Tamaoki N, Lemon RN, Iriki A, Okano H (2011) Population-averaged standard template brain atlas for the common marmoset (Callithrix jacchus). Neuroimage 54(4):2741–2749

    Article  PubMed  CAS  Google Scholar 

  • Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B (2008) Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39(4):1585–1599

    Article  PubMed  Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2:311–333

    PubMed  CAS  Google Scholar 

  • Jeffs J, Ichida JM, Federer F, Angelucci A (2009) Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. Cereb Cortex 19(4):963–981

    Article  PubMed  Google Scholar 

  • Jiang Q, Zhang ZG, Chopp M (2010) MRI evaluation of white matter recovery after brain injury. Stroke 41(Suppl 10):S112–S113

    Article  PubMed  Google Scholar 

  • King AJ (2005) Auditory plasticity: vocal output shapes auditory cortex. Curr Biol 15(13):R503–R505

    Article  PubMed  CAS  Google Scholar 

  • Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10(3):952–974

    PubMed  CAS  Google Scholar 

  • Liu JV, Bock NA, Silva AC (2011) Rapid high-resolution three-dimensional mapping of T1 and age-dependent variations in the non-human primate brain using magnetization-prepared rapid gradient-echo (MPRAGE) sequence. Neuroimage 56(3):1154–1163

    Article  PubMed  Google Scholar 

  • Lyon D, Kaas J (2001) Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys. J Neurosci 21(1):249–261

    PubMed  CAS  Google Scholar 

  • Meyer JS, Brevard ME, Piper BJ, Ali SF, Ferris CF (2006) Neural effects of MDMA as determined by functional magnetic resonance imaging and magnetic resonance spectroscopy in awake marmoset monkeys. Ann N Y Acad Sci 1074:365–376

    Article  PubMed  CAS  Google Scholar 

  • Missler M, Wolff A, Merker HJ, Wolff JR (1993) Pre- and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes. J Comp Neurol 333(1):53–67

    Article  PubMed  CAS  Google Scholar 

  • Newman JD, Kenkel WM, Aronoff EC, Bock NA, Zametkin MR, Silva AC (2009) A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res Rev 62(1):1–18

    Article  PubMed  Google Scholar 

  • Pessoa V, Abrahao J, Pacheco R, Pereira L, Magalhaes-Castro B, Saraiva P (1992) Relative sizes of cortical visual areas in marmosets: functional and phylogenetic implications. Exp Brain Res 88(2):459–462

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Jones E (1984) Cellular components of the cerebral cortex. Plenum, New York

    Google Scholar 

  • Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365(2):232–255

    Article  PubMed  CAS  Google Scholar 

  • Pistorio AL, Hendry SH, Wang X (2006) A modified technique for high-resolution staining of myelin. J Neurosci Methods 153(1):135–146

    Article  PubMed  CAS  Google Scholar 

  • Puller C, Haverkamp S (2011) Bipolar cell pathways for color vision in non-primate dichromats. Vis Neurosci 28(1):51–60

    Article  PubMed  Google Scholar 

  • Reser DH, Burman KJ, Richardson KE, Spitzer MW, Rosa MGP (2009) Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing. Eur J Neurosci 30(4):578–592

    Article  PubMed  Google Scholar 

  • Rosa MG, Elston GN (1998) Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): middle temporal area, middle temporal crescent, and surrounding cortex. J Comp Neurol 393(4):505–527

    Article  PubMed  CAS  Google Scholar 

  • Rosa MG, Schmid LM (1995) Visual areas in the dorsal and medial extrastriate cortices of the marmoset. J Comp Neurol 359(2):272–299

    Article  PubMed  CAS  Google Scholar 

  • Rosa MGP, Palmer SM, Gamberini M, Burman KJ, Yu H, Reser DH, Bourne JA, Tweedale R, Galletti C (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29(14):4548–4563

    Article  PubMed  CAS  Google Scholar 

  • Rowe N (1996) The pictorial guide to the living primates. Pogonias Press, Charlestown

    Google Scholar 

  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459(7246):523–527

    Article  PubMed  CAS  Google Scholar 

  • Sati P, Silva AC, van Gelderen P, Gaitan MI, Wohler JE, Jacobson S, Duyn JH, Reich DS (2012) In vivo quantification of T2 anisotropy in white matter fibers in marmoset monkeys. Neuroimage 59(2):979–985

    Article  PubMed  Google Scholar 

  • Sigalovsky IS, Fischl B, Melcher JR (2006) Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 32(4):1524–1537

    Article  PubMed  Google Scholar 

  • Silva AC, Liu JV, Hirano Y, Leoni RF, Merkle H, Mackel JB, Zhang XF, Nascimento GC, Stefanovic B (2011) Longitudinal functional magnetic resonance imaging in animal models. Methods Mol Biol 711:281–302

    Article  PubMed  Google Scholar 

  • Solomon SS, Tailby C, Gharaei S, Camp AJ, Bourne JA, Solomon SG (2011) Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset. J Physiol 589(Pt 23):5741–5758

    PubMed  CAS  Google Scholar 

  • ’t Hart BA, Laman JD, Bauer J, Blezer E, van Kooyk Y, Hintzen RQ (2004) Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol 3(10):588–597

    Article  PubMed  Google Scholar 

  • Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME (2003) Reproduction in captive common marmosets (Callithrix jacchus). Comp Med 53(4):364–368

    PubMed  CAS  Google Scholar 

  • Tosun D, Rettmann ME, Han X, Tao X, Xu C, Resnick SM, Pham DL, Prince JL (2004) Cortical surface segmentation and mapping. Neuroimage 23(Suppl 1):S108–S118

    Article  PubMed  Google Scholar 

  • Trampel R, Ott DVM, Turner R (2011) Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21(9):2075–2081

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248(2):190–222

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199(3):293–326

    Article  PubMed  Google Scholar 

  • Walters NB, Egan GF, Kril JJ, Kean M, Waley P, Jenkinson M, Watson JDG (2003) In vivo identification of human cortical areas using high-resolution MRI: an approach to cerebral structure-function correlation. Proc Natl Acad Sci USA 100(5):2981–2986

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2007) Neural coding strategies in auditory cortex. Hear Res 229(1–2):81–93

    Article  PubMed  Google Scholar 

  • Wong P, Kaas JH (2010) Architectonic subdivisions of neocortex in the Galago (Otolemur garnetti). Anat Rec (Hoboken) 293(6):1033–1069

    Article  Google Scholar 

  • Yamada M, Momoshima S, Masutani Y, Fujiyoshi K, Abe O, Nakamura M, Aoki S, Tamaoki N, Okano H (2008) Diffusion-tensor neuronal fiber tractography and manganese-enhanced MR imaging of primate visual pathway in the common marmoset: preliminary results. Radiology 249(3):855–864

    Article  PubMed  Google Scholar 

  • Yu H, Verma R, Yang Y, Tibballs HA, Lui LL, Reser DH, Rosa MGP (2010) Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity. Eur J Neurosci 31(6):1043–1062

    Article  PubMed  Google Scholar 

  • Zhang Y, Xiong Y, Mahmood A, Meng Y, Liu Z, Qu C, Chopp M (2010) Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res 1353:249–257

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Amunts K (2012) Architecture of the cerebral cortex. In: Paxinos G, Mai JK (eds) The human nervous system. Academic, San Diego

    Google Scholar 

  • Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrification in the cerebral cortex of primates. Brain Behav Evol 34(3):143–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Bock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bock, N.A., Silva, A.C. (2013). Visualizing Myeloarchitecture In Vivo with Magnetic Resonance Imaging in Common Marmosets (Callithrix jacchus). In: Geyer, S., Turner, R. (eds) Microstructural Parcellation of the Human Cerebral Cortex. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37824-9_8

Download citation

Publish with us

Policies and ethics