Skip to main content

How to Integrate Electric Vehicles in the Future Energy System?

  • Chapter
  • First Online:
Evolutionary Paths Towards the Mobility Patterns of the Future

Part of the book series: Lecture Notes in Mobility ((LNMOB))

Abstract

Main challenges within the energy system of tomorrow are more volatile, less controllable and at the same time more decentralized electricity generation. Furthermore, the increasing research and development activities on electric vehicles (EV) make a significant share of electric vehicles within the passenger car fleet in 2030 more and more likely. This will lead to a further increase of power demand during peak hours. Answers to these challenges are seen, besides measures on the electricity supply side (e.g. investing in more flexible power plants or storage plants), in (1) grid extensions, which are expensive and time consuming due to local acceptance, and in (2) influencing electricity demand by different demand side management (DSM) approaches. Automatic delayed charging of electric vehicles as one demand side management approach can help to avoid peaks in household load curves and, even more, increase the low electricity demand during the night. This facilitates integrating more volatile regenerative power sources, too. Bidirectional charging (V2G) and storing of electricity extends the possibilities to integrate electric vehicles into the grid. But, comparing electricity storage costs and availability of electric vehicles with costs and technical conditions of other technologies leads to the conclusion, that vehicle to grid (V2G) is currently not competitive—but might be competitive in the future, e.g. within the electricity reserve market. In summary, the chapter gives an overview of the future electricity market with the focus on electric vehicles and argues for automatic delayed charging of electric vehicles due to economic and technical reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Currently, most domestic combined heat power plants are heat driven—their operation time depends on the heat demand of the household and not on the electricity demand.

  2. 2.

    The corresponding formula is \( P_{v} = 3 \cdot R \cdot \frac{{P^{2} }}{{U^{2} }}. \)

  3. 3.

    This is confirmed for many other countries by other studies e.g. Göransson et al. (2009), Davies and Kurani (2010), Waraich et al. (2009), Weiller (2011), Hartmann and Özdemir (2010), van Vliet et al. (2011), or Leitinger and Litzlbauer (2011).

  4. 4.

    Especially for the second strategy an instant charging to a certain state of charge (SoC) might be meaningful (e.g. to guarantee a trip to the next hospital).

  5. 5.

    We assumed average electricity consumption depending on the car segment (small, medium, large).

  6. 6.

    In Germany the average mileage of a car is 12,000 km and the average consumption of battery EV is 0.25 kWh/km, which results in a required energy of 3 MWh/a.

  7. 7.

    In general the depreciation time for vehicle investment in Germany is 6 years (BMF 2010).

  8. 8.

    Other relevant use cases could be focused on the own household or a micro-grid, where no market is influenced and the benefit is localized in the own household or community.

  9. 9.

    In Germany, however, it is currently not possible to integrate the vehicles due to the organizational and technical requirements. e.g. the smallest bid is 5 MW (Regelleistung 2011).

  10. 10.

    The average weekly energy provided is about 80 GWh (Regelleistung 2011) with a potential capacity offer of 3.2 GW (Regelleistung 2011).

  11. 11.

    Today prices for Li-ion batteries are more likely at 600 €/kWh (Jochem et al. 2011), although severe data is not given.

  12. 12.

    The C-rate is neglected here, as charging rates at 3.5 kW are much lower compared to usual driving cycles and thus causes hardly any additional costs. Other additional costs are not measurable or not known yet.

  13. 13.

    The procurement period is reduced from one month to one week per bid, since June 2011. Price fluctuation is still very high and prices between 800 and 1,500 are common; but deviations thereof in both directions numerous. This volatility holds equally for the energy price.

References

  • Barenschee ER (2010) Energiespeicherung und Lithium-Ionentechnologie. In: Proceedings of senior expert chemists annual meeting, Bitterfeld

    Google Scholar 

  • BDEW (German Association of Energy and Water Industries) (2011) Abschätzung des Ausbaubedarfs in deutschen Verteilungsnetzen aufgrund von Photovoltaik- und Windeinspeisungen bis 2020. Berlin

    Google Scholar 

  • BMF (German Federal Ministry of Finance) (2010) AfA-Tabelle fĂĽr die allgemein verwendbaren AnlagegĂĽter. Bonn

    Google Scholar 

  • BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety) (2010) Langfristszenarien und Strategien fĂĽr den Ausbau der erneuerbaren Energien in Deutschland bei BerĂĽcksichtigung der Entwicklung in Europa und global—“Leitstudie 2010”. Berlin

    Google Scholar 

  • BNetzA (German Federal Network Agency) (2011) Monitoringbericht 2011. Bonn

    Google Scholar 

  • Bunzeck I, Feenstra CEJ, Paukovic M (2011) Preferences of potential users of electric cars related to charging—a survey in eight EU countries. Deliverable D3.2 of the Grid for Vehicles Project within the FP7 program of the European Commission, Brussels

    Google Scholar 

  • Dallinger D, Krampe D, Wietschel M (2011) Vehicle-to-grid regulation reserves based on a dynamic simulation of mobility behavior. IEEE Trans Smart Grid 2(2):302–313

    Article  Google Scholar 

  • Davies J, Kurani KS (2010) Households’ plug-in hybrid electric vehicle recharging behavior: observed variation in households’ use of a 5 kWh blended PHEV-conversion. In: Working paper UCD-ITS-WP-10-04, Institute of Transportation Studies, University of California, Davis

    Google Scholar 

  • Deane JP, GallachĂłir BPĂ“, McKeogh EJ (2010) Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sustain Energy Rev 14:1293–1302

    Article  Google Scholar 

  • DENA (German Energy Agency) (2005) Energiewirtschaftliche Planung fĂĽr die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020 (DENA Netzstudie 1). Berlin

    Google Scholar 

  • DENA (German Energy Agency) (2010) Integration of renewable energy sources in the German power supply system from 2015–2020 with an Outlook to 2025—dena Grid Study II. Berlin

    Google Scholar 

  • EAC (Electricity Advisory Committee) (2011) Energy storage activities in the United States electricity grid. Washington, DC

    Google Scholar 

  • EC (European Comission) (2011) Proposal for the directive of the European Parliament and of the council on energy efficiency and repealing directives 2004/8/EC and 2006/32/EC, SEC(2011) 779 final, 22/06/2011. Brussels

    Google Scholar 

  • Erdmenger Ch, Lehmann H, MĂĽschen K, Tambke J, Mayr S, Kuhnhenn K (2009) A climate protection strategy for Germany—40 % reduction of CO2 emissions by 2020 compared to 1990. Energy Policy 37:158–165

    Article  Google Scholar 

  • EWI (Institute of Energy Economics at the University of Cologne), GWS (Institute of Economic Structures Research) & prognos (2010) Energieszenarien fĂĽr ein Energiekonzept der Bundesregierung. Basel, Cologne, OsnabrĂĽck

    Google Scholar 

  • Göransson L, Karlsson S, Johnsson F (2009) Plug-in hybrid electric vehicles as a mean to reduce CO2 emissions from electricity production. In: Proceedings of EVS24, Stavanger

    Google Scholar 

  • Hartmann N, Ă–zdemir ED (2010) Impact of different utilization scenarios of electric vehicles on the German grid in 2030. J Power Sources 196(4):2311–2318

    Article  Google Scholar 

  • Heinrichs H, EĂźer-Frey A, Jochem P, Fichtner W (2011) Zur Analyse der langfristigen Entwicklung des deutschen Kraftwerkparks—Zwischen europäischem Energieverbund und dezentraler Erzeugung. In: VDI-GET (ed) Optimierung in der Energiewirtschaft, VDI Publisher, DĂĽsseldorf

    Google Scholar 

  • Hill DM, Agarwal AS, Ayello F (2012) Fleet operator risks for using fleets for V2G regulation. Energy Policy 41:221–231

    Article  Google Scholar 

  • Hillemacher L, EĂźer-Frey A, Fichtner W (2011) Preis- und Effizienzsignale im MeRegio Smart Grid Feldtest—Simulationen und erste Ergebnisse. In: Proceedings of IEWT (Internationale Energiewirtschaftstagung), Wien

    Google Scholar 

  • IIP (Institute for Industrial Production) (2011) Internal database of electricity storage technologies

    Google Scholar 

  • Infas (Institute for Applied Social Sciences), & DLR (German Aerospace Centre) (2008) MID—Mobilität in Deutschland 2008. Berlin

    Google Scholar 

  • Jochem P, Feige J, Kaschub T, Fichtner W (2011) Increasing demand for battery applications. In: Proceedings of 6th international renewables energy storage conference and exhibition, Berlin

    Google Scholar 

  • Kalhammer FR, Kopf BM, Swan DH, Roan VP, Walsh MP (2007) Status and prospects for zero emissions vehicle technology—report of the ARB independent expert panel 2007. California Environmental Protection Agency—Air Resources Board, California

    Google Scholar 

  • Kaschub T, MĂĽltin M, Fichtner W, Schmeck H, Kessler A (2010) Smart charging of electric vehicles in the context of an urban district. In: VDE congress E-mobility, Leipzig

    Google Scholar 

  • Kaschub T, Jochem P, Fichtner W (2011) Integration von Elektrofahrzeugen und Erneuerbaren Energien ins Elektrizitätsnetz - eine modellbasierte regionale Systemanalyse. In: 7. Internationale Energiewirtschaftstagung, TU Wien

    Google Scholar 

  • Kempton W, Tomić J (2005a) Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J Power Sources 144(1):268–279

    Article  Google Scholar 

  • Kempton W, Tomić J (2005b) Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J Power Sources 144(1):280–294

    Article  Google Scholar 

  • Kley F (2011) Ladeinfrastrukturen fĂĽr Elektrofahrzeuge. Frauenhofer Publisher, Karlsruher Institut fĂĽr Technologie, Karlsruhe

    Google Scholar 

  • Leitinger C, Litzlbauer M (2011) Netzintegration und Ladestrategien der Elektromobilität. Elektrotechnik und Informationstechnik 128(1–2):10–15

    Google Scholar 

  • Mez L (1997) The German electricity reform attempts: reforming co-optive networks. In: Midttun A (ed) European electricity systems in transition. Elsevier, Amsterdam, pp 231–252

    Chapter  Google Scholar 

  • Nagl S, FĂĽrsch M, Paulus M, Richter J, TrĂĽby J, Lindenberger D (2011) Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050. Utilities Policy 19:185–192

    Article  Google Scholar 

  • Oswald BR (2009) Optionen im Stromnetz fĂĽr Hoch- und Höchstspannung: Freileitung/Erdkabel, Drehstrom/Gleichstrom. In: Proceedings of Netz-Event 14. Mai 2009: Freileitung/Erdkabel

    Google Scholar 

  • Paetz A-G, DĂĽtschke E, Schäfer A (2011) Die Last mit der Lastkontrolle. Energie & Management, 12/2011, 19

    Google Scholar 

  • Pehnt M, Helms H, Lambrecht U, Dallinger D, Wietschel M, Heinrichs H, Kohrs R, Link J, Trommer S, Pollok T, Behrens P (2011) Elektroautos in einer von erneuerbaren Energien geprägten Energiewirtschaft. Zeitschrift fĂĽr Energiewirtschaft 35(3):221–234

    Article  Google Scholar 

  • Pesaran A (2007) Battery choices and potential requirements for plug-in hybrids. In: National renewable energy laboratory (NREL), plug-in hybrid electric truck workshop, hybrid truck users forum, Los Angeles

    Google Scholar 

  • Pollok T, Szszechowicz E, Matrose C, Schnettler A, Stöckl G, Kerber G, Lödl M, Witzmann R, Behrens P (2010) Electric mobility fleet test—grid management strategies with electric vehicle fleets. In: VDE-Kongress 2010, Leipzig

    Google Scholar 

  • Pollok T, Dederichs T, Smolka T, Theisen T, Schowe von der Brelie B, Schnettler A (2009) Technical assessment of dispersed electric vehicles in medium voltage distribution networks. CIRED, 0887. Prague

    Google Scholar 

  • RB (Roland Berger) (2010) Electro-mobility—challenges and opportunities for Europe. European Economic and Social Committee, Brussels

    Google Scholar 

  • Regelleistung (2011) Own evaluation of data from www.regelleistung.net in the time period 12.07.11 until 11.12.11

  • Schäfer T (2009) Batterietechnologie: Trends, Entwicklungen, Anwendungen. In: Proceedings of 3rd Expert Forum Leipzig. Leipzig

    Google Scholar 

  • Szczechowicz E, Pollok T, Schnettler A (2011) Economic assessment of electric vehicle fleets providing ancillary services. CIRED, 0967. Frankfurt

    Google Scholar 

  • Stöckl G, Witzmann R, Eckstein J (2011) Analyzing the capacity of low voltage grids for electric vehicles. In: IEEE international electrical power and energy conference, Winnipeg

    Google Scholar 

  • Tomić J, Kempton W (2007) Using fleets of electric-drive vehicles for grid support. J Power Sources 168:459–468

    Article  Google Scholar 

  • UCTE (Union for the Co-ordination of Transmission of Electricity) (2009) Operation handbook: policy 1: load-frequency control. V3.0 rev15 01.04.2009, Brussels

    Google Scholar 

  • VDE (German Association for Electrical, Electronic and Information Technologies) (2008) Energiespeicher in Stromversorgungssystemen mit hohem Anteil erneuerbarer Energieträger—Bedeutung, Stand der Technik, Handlungsbedarf. Power Engineering Society (ETG). Berlin

    Google Scholar 

  • van Vliet O, Brouwer AS, Kuramochi T, van den Broek M, Faaij A (2011) Energy use, cost and CO2 emissions of electric cars. J Power Sources 196(4):2298–2310

    Article  Google Scholar 

  • Waraich RA, Galus MD, Dobler C, Balmer M, Andersson G, Axhausen KW (2009) Plug-in hybrid electric vehicles and smart grid: investigations based on a micro-simulation. In: Proceedings of 12th international conference on travel behaviour research, Jaipur

    Google Scholar 

  • Weiller C (2011) Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States. Energy Policy 39:3766–3778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Jochem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jochem, P., Kaschub, T., Fichtner, W. (2014). How to Integrate Electric Vehicles in the Future Energy System?. In: HĂĽlsmann, M., Fornahl, D. (eds) Evolutionary Paths Towards the Mobility Patterns of the Future. Lecture Notes in Mobility. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37558-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37558-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37557-6

  • Online ISBN: 978-3-642-37558-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics