Skip to main content

Natural Superlattice Material: TiS\(_{2}\)-Based Misfit-Layer Compounds

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Layered titanium disulfide has been reported to show a high power factor due to its two-dimensional electronic state. However, its high thermal conductivity makes the conversion efficiency too small for application. Our strategy is to intercalate a layer of BiS, SnS or PbS into the van der Waals gap of the TiS\(_{2}\) layers to form natural superlattices with a general formula (MS)\(_{1+{\text{ x }}}\)(TiS\(_{2})_{\text{ n }}\) (\({ {M}}=\mathrm{Bi}\), Sn, Pb; \(\mathrm{n}=1\), 2). It has been found that the lattice thermal conductivity was significantly reduced after intercalation, which is close to or even lower than the calculated minimum thermal conductivity. Measurement of sound velocities shows that the ultra-low thermal conductivity partially originates from the softening of the transverse modes of lattice wave due to the low shear modulus between the hetero-layers. Furthermore, various planer defects including translational displacement and stacking faults are found in those misfit layer compounds and further reduce the lattice thermal conductivity. Meanwhile, electron transfer from the MS layer to the TiS\(_{2}\) layer deteriorates the thermoelectric performance by reducing the power factor and increasing the electronic thermal conductivity. The SnS intercalation compound (SnS)\(_{1.2}\)(TiS\(_{2})_{2}\) shows the least electron transfer and the ZT value reaches 0.37 at 700 K. Reduction in the carrier concentration in these misfit layer compounds is required to achieve higher ZT value.

Moreover, we propose a large family of misfit layer compounds (MX)\(_{1+x}\)(TX\(_{2})_{n}\) (\(M=\text{ Pb }\), Bi, Sn, Sb, Rare earth elements; \(T=\text{ Ti }\), V, Cr, Nb, Ta, \(X=\text{ S }\), Se; \(n=1, 2, 3\)) with natural superlattice structures for possible candidates for high-performance thermoelectric materials, including both n-type and p-type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93-K in a new mixed-phase Y-Ba-Cu-O compound system at Ambient pressure. Phys. Rev. Lett. 58, 908 (1987)

    Article  Google Scholar 

  2. T. Ishihara, J. Takahashi, T. Goto, Exciton-state in two-dimensional Perovskite semiconductor (C\(_{10}\)H\(_{21}\)NH\(_{3})\) \(_{2}\)PbI\(_{4}\). Solid State Commun. 69, 933 (1989)

    Article  Google Scholar 

  3. H. Ohta, H. Hosono, Transparent oxide optoelectronics. Mater. Today 7, 42 (2004)

    Article  Google Scholar 

  4. D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, CsBi\(_{4}\)Te\(_{6}\): A high-performance thermoelectric material for low-temperature applications. Science 287, 1024 (2000)

    Article  Google Scholar 

  5. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo\(_{2}\)O\(_{4}\) single crystals. Phys. Rev. B 56, R12685 (1997)

    Article  Google Scholar 

  6. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, An oxide single crystal with high thermoelectric performance in air. Jap. J. Appl. Phys. 39, L1127 (2000)

    Article  Google Scholar 

  7. H. Ohta, W.-S. Seo, K. Koumoto, Thermoelectric properties of homologous compounds in the ZnO-In\(_{2}\)O\(_{3}\) system. J. Am. Ceram. Soc. 79, 2193 (1996)

    Article  Google Scholar 

  8. Y. Wang, K.H. Lee, H. Hyuga, H. Kita, K. Inaba, H. Ohta, K. Koumoto, Enhancement of seebeck coefficient for SrO(SrTiO\(_{3})\) \(_{2}\) by Sm substitution: crystal symmetry restoration of distorted TiO\(_{6}\) octahedra. Appl. Phys. Lett. 91, 242102 (2007)

    Article  Google Scholar 

  9. C. Wan, Y. Wang, W. Norimatsu, M. Kusunoki, K. Koumoto, Nanoscale stacking faults induced low thermal conductivity in thermoelectric layered metal sulfides. Appl. Phys. Lett. 100, 101913 (2012)

    Article  Google Scholar 

  10. Y.E. Putri, C. Wan, Y. Wang, W. Norimatsu, M. Kusunoki, K. Koumoto, Effects of alkaline earth doping on the thermoelectric properties of misfit layer sulfides. Scripta Mater. 66, 895 (2012)

    Article  Google Scholar 

  11. C.L. Wan, Y.F. Wang, N. Wang, W. Norimatsu, M. Kusunoki, K. Koumoto, Intercalation: building a natural superlattice for better thermoelectric performance in layered Chalcogenides. J. Electron. Mater. 40, 1271 (2011)

    Article  Google Scholar 

  12. C. Wan, Y. Wang, N. Wang, K. Koumoto, Low-thermal-conductivity (MS)\(_{1+{\text{ x }}}\)(TiS\(_{2})\) \(_{2}\) (M = Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials. Materials 3, 2606 (2010)

    Article  Google Scholar 

  13. C. Wan et al., Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater. 11, 044306 (2010)

    Article  Google Scholar 

  14. G.A. Wiegers, Misfit layer compounds: structures and physical properties. Prog. Solid St. Che. 24, 1 (1996)

    Article  Google Scholar 

  15. J. Rouxel, A. Meerschaut, G.A. Wiegers, Chalcogenide misfit layer compounds. J. Alloy Compd. 229, 144 (1995)

    Article  Google Scholar 

  16. G.A. Wiegers, A. Meerschaut, Structures of misfit layer compounds (MS)\(_{n}\)TS\(_{2}\) (M=Sn, Pb, Bi, rare earth metals; T=Nb, Ta, Ti, V, Cr; 1.08\(<\)n\(<\)1.23). J. Alloy Compd. 178, 351 (1992)

    Article  Google Scholar 

  17. Y. Miyazaki, H. Ogawa, T. Kajitani, Preparation and thermoelectric properties of misfit-layered sulfide [Yb\(_{1.90}\)S\(_{2}\)]\(_{0.62}\)NbS\(_{2}\). Japan. J. Appl. Phys. 2 43, L1202 (2004)

    Google Scholar 

  18. Q. Lin, C.L. Heideman, N. Nguyen, P. Zschack, C. Chiritescu, D.G. Cahill, D.C. Johnson, Designed synthesis of families of misfit-layered compounds. Inorg. Chem. Eur. J. Solid State 2382 (2008)

    Google Scholar 

  19. C. Heideman, N. Nyugen, J. Hanni, Q. Lin, S. Duncombe, D.C. Johnson, P. Zschack, The synthesis and characterization of new [(BiSe)\(_{1.10}\)]\(_{m}\)[NbSe\(_{2}\)]\(_{n}\), [(PbSe)\(_{1.10}\)]\(_{m}\)[NbSe\(_{2}\)]\(_{n}\), [(CeSe)\(_{1.14}\)]\(_{m}\)[NbSe\(_{2}\)]\(_{n}\) and [(PbSe)\(_{1.12}\)]\(_{m}\)[TaSe\(_{2}\)]\(_{n}\) misfit layered compounds. J. Solid State Chem. 181, 1701 (2008)

    Google Scholar 

  20. C. Chiritescu, D.G. Cahill, C. Heideman, Q.Y. Lin, C. Mortensen, N.T. Nguyen, D. Johnson, R. Rostek, H. Bottner, Low thermal conductivity in nanoscale layered materials synthesized by the method of modulated elemental reactants. J. Appl. Phys. 104 (2008)

    Google Scholar 

  21. A. Mavrokefalos, Q.Y. Lin, M. Beekman, J.H. Seol, Y.J. Lee, H.J. Kong, M.T. Pettes, D.C. Johnson, L. Shi, In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)\(_{0.99}\)]\(_{x}\)(WSe\(_{2})\) \(_{x}\) superlattice thin films. Appl. Phys. Lett. 96, 181908 (2010)

    Article  Google Scholar 

  22. A. Meerschaut, C. Auriel, J. Rouxel, Structure determination of a new misfit layer compound (PbS)\(_{1.18}\)(TiS\(_{2})\) \(_{2}\). J. Alloy Compd. 183, 129 (1992)

    Article  Google Scholar 

  23. C.M. Fang, R.A. deGroot, G.A. Wiegers, C. Haas, Electronic structure of the misfit layer compound (SnS)\(_{1.20}\)TiS\(_{2}\): Band structure calculations and photoelectron spectra. J. Phys. Condens. Mat. 8, 1663 (1996)

    Article  Google Scholar 

  24. G.A. Wiegers, A. Meetsma, J.L. Deboer, S. Vansmaalen, R.J. Haange, X-ray crystal-structure determination of the triclinic misfit layer compound (SnS)\(_{1.20}\)TiS\(_{2}\). J. Phys. Condens. Mat. 3, 2603 (1991)

    Article  Google Scholar 

  25. C. Auriel, A. Meerschaut, R. Roesky, J. Rouxel, Crystal-structure determination and transport-properties of a new misfit layer compound (PbSe)\(_{1.12}\)(NbSe\(_{2})\) \(_{2}\) PbNb\(_{2}\)Se\(_{5}\). Eur. J. Solid State Inorg. 29, 1079 (1992)

    Google Scholar 

  26. A. Meerschaut, L. Guemas, C. Auriel, J. Rouxel, Preparation, structure determination and transport-properties of a new misfit layer compound: (PbS)\(_{1.14}\)(NbS\(_{2})\) \(_{2}\). Eur. J. Solid State Inorg. 27, 557 (1990)

    Google Scholar 

  27. H. Imai, Y. Shimakawa, Y. Kubo, Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B 64, 241104 (2001)

    Article  Google Scholar 

  28. P.C. Klipstein, A.G. Bagnall, W.Y. Liang, E.A. Marseglia, R.H. Friend, Stoichiometry dependence of the transport-properties of TiS\(_{2}\). J. Phys. C Solid State 14, 4067 (1981)

    Article  Google Scholar 

  29. J.J. Barry, H.P. Hughes, P.C. Klipstein, R.H. Friend, Stoichiometry effects in angle-resolved photoemission and transport studies of Ti\(_{1+{\text{ x }}}\)S\(_{2}\). J. Phys. C Solid State 16, 393 (1983)

    Article  Google Scholar 

  30. J.A. Wilson, Modeling contrasting semimetallic characters of TiS\(_{2}\) and TiSe\(_{2}\). Phys. Status Solidi B 86, 11 (1978)

    Article  Google Scholar 

  31. H. Martinez, C. Auriel, D. Gonbeau, G. Pfister-Guillouzo, A. Meerschaut, Electronic structure of two misfit layer compounds: (PbS)\(_{1.18}\)(TiS\(_{2})\) and (PbS)\(_{1.18}\)(TiS\(_{2})\) \(_{2}\). J. Electron. Spectrosc. Relat. Phenom. 95, 145 (1998)

    Article  Google Scholar 

  32. A. Meerschaut, Misfit layer compounds. Curr. Opin. Solid State Mater. Sci. 1, 250 (1996)

    Article  Google Scholar 

  33. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  34. Y. Ohno, Electronic-structure of the misfit-layer compounds PbTiO\(_{3}\) and SnNbS\(_{3}\). Phys. Rev. B 44, 1281 (1991)

    Article  Google Scholar 

  35. D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal-conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992)

    Article  Google Scholar 

  36. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Ultralow thermal conductivity in disordered, layered WSe\(_{2}\) crystals. Science 315, 351 (2007)

    Article  Google Scholar 

  37. J. Wulfff, A. Meerschaut, S. Van Smaalen, R.J. Haange, J.L. De Boer, G.A. Wiegers, Structure, electrical transport, and magnetic properties of the misfit layer compounds (PbS)\(_{1.13}\)TaS\(_{2}\). J. Solid State Chem. 84, 118 (1990)

    Article  Google Scholar 

  38. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of Merit. Phys. Rev. B 47, 12727 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. L. Wan or K. Koumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wan, C.L., Wang, Y.F., Putri, Y.E., Koumoto, K. (2013). Natural Superlattice Material: TiS\(_{2}\)-Based Misfit-Layer Compounds. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_8

Download citation

Publish with us

Policies and ethics