Skip to main content

The Peierls Distortion and Quasi-One-Dimensional Crystalline Materials of Indium Selenides

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Recent investigations on thermoelectric research mainly focus on nano-structured low dimensional systems. It has been proven that the artificial structured nano-composites and superlattices have significant effect on lowering thermal conductivity. Peierls distortion is a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening, called Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, result in lowering thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. In this chapter, we discuss the concept of Peierls transition and charge density wave in terms of mean field theory. As a toy model of charge density wave, we investigated the thermoelectric properties of \({\mathrm{CeTe }}_{2}\) and its doped compounds. The routes for high ZT materials development of \({\mathrm{In }}_{4}{\mathrm{Se }}_{3-\updelta }\) are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of \({\mathrm{In }}_{4}{\mathrm{Se }}_{3-\updelta }\) need to be optimized indicating that further ZT can be achieved by electron doping. The chlorine doped \({\mathrm{In }}_{4}{\mathrm{Se }}_{3-\updelta }{\mathrm{Cl }}_{0.03}\) compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of \(ZT=1.53\) at \(450\,^{\circ }\)C as an n-type materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  Google Scholar 

  2. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996)

    Article  Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature (London) 413, 597 (2001)

    Article  Google Scholar 

  4. H. Ohta, S.W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Nature Mater. 6, 129 (2007)

    Article  Google Scholar 

  5. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)

    Article  Google Scholar 

  6. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007)

    Article  Google Scholar 

  7. G. Grüner, in Density Waves in Solids (Addison-Wesley, Reading, 1994)

    Google Scholar 

  8. Reprinted with permission from J.S. Rhyee, E. Cho, K.H. Lee, S.I. Kim, E.S. Lee, S.M. Lee, Y.S. Kwon, J. Appl. Phys. 105, 053712 (2009). Copyright (2009), American Institute of Physics

    Google Scholar 

  9. A. Fröhlich, Proc. Roy. Soc. (London) Ser. A223, 296 (1954)

    Google Scholar 

  10. , Seoul, 1986

    Google Scholar 

  11. B. Mihaila, arXiv:1111.5337v1 (2 Nov. 2011)

    Google Scholar 

  12. J. Bardeen, Phys. Rev. 59, 928 (1941)

    Google Scholar 

  13. M. Tinkham, in Introduction to Superconductivity (McGraw-Hill, Singapore, 1996)

    Google Scholar 

  14. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  Google Scholar 

  15. Reprinted with permission from C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007). Copyright (2007), The American Association for Advancement of Science

    Google Scholar 

  16. A. Mavrokefalos, N.T. Nguyen, M.T. Pettes, D.C. Johnson, L. Shi, Appl. Phys. Lett. 91, 171912 (2007)

    Article  Google Scholar 

  17. M.H. Jung, T. Ekino, Y.S. Kwon, T. Takabatake, Phys. Rev. B 63, 035101 (2000)

    Article  Google Scholar 

  18. K.Y. Shin, V. Brouet, N. Ru, Z.X. Shen, I.R. Fisher, Phys. Rev. B 72, 085132 (2005)

    Article  Google Scholar 

  19. H.J. Goldsmid, in Introduction to Thermoelectricity (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  20. N.W. Ashcroft, N.D. Mermin, in Solid State Physics (Harcourt Brace, Jovanovitch, 1976)

    Google Scholar 

  21. A. Kikuchi, J. Phys. Soc. Jpn. 67, 1308 (1998)

    Article  Google Scholar 

  22. J.H. Shim, J.-S. Kang, B.I. Min, Phys. Rev. Lett. 93, 156406 (2004)

    Article  Google Scholar 

  23. H. Scherrer, S. Scherrer, in CRC Handbook of Thermoelectricity, ed. by D.M. Rowe (CRC, Boca Raton, 1995), p. 211

    Google Scholar 

  24. G.S. Nolas, J.W. Sharp, H.G. Goldsmid, in Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)

    Book  Google Scholar 

  25. B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325 (1996)

    Article  Google Scholar 

  26. G.S. Nolas, M. Kaeser, R.T. Littleton IV, T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000)

    Article  Google Scholar 

  27. H. Fritzsche, Solid State Commun. 9, 1813 (1971)

    Article  Google Scholar 

  28. A. Balitskii, V.P. Savchyn, B. Jaeckel, W. Jaegermann, Physica E (Amsterdam) 22, 921 (2004)

    Article  Google Scholar 

  29. P.V. Galiy, A.V. Musyanovych, Y.M. Fiyala, Physica E (Amsterdam) 35, 88 (2006)

    Article  Google Scholar 

  30. Reprinted with permission from Y. B. Losovyj, M. Klinke, E. Cai, I. Rodriguez, J. Zhang, L. Makinistian, A.G. Petukhov, E.A. Albanesi, P. Galiy, Y. Fiyala, J. Liu, P.A. Dowben, Appl. Phys. Lett. 92, 122107 (2008) Copyright (2008), American Institute of Physics

    Google Scholar 

  31. Y.B. Losovyj, L. Makinistian, E.A. Albanesi, A.G. Petukhov, J. Liu, P. Galiy, O.R. Dveriy, P.A. Dowben, J. Appl. Phys. 104, 083713 (2008) Copyright (2008), American Institute of Physics

    Google Scholar 

  32. P.A. Dowben, Surf. Sci. Rep. 40, 151 (2000)

    Article  Google Scholar 

  33. Reprinted with permission from J.-S. Rhyee, E. Cho, K.H. Lee, S.M. Lee, S.I. Kim, H.-S. Kim, Y.S. Kwon, S.J. Kim, Appl. Phys. Lett. 95, 212106 (2009) Copyright (2009), American Institute of Physics

    Google Scholar 

  34. G.J. Snyder, E.S. Toberer, Nature Mater. 7, 105 (2008)

    Article  Google Scholar 

  35. J.-S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J.H. Shim, G. Kotliar, Nature (London) 459, 965 (2009)

    Article  Google Scholar 

  36. G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (March1997)

    Article  Google Scholar 

  37. K.F. Hsu et al., Science 303, 818 (2004)

    Article  Google Scholar 

  38. N. Chen et al., Appl. Phys. Lett. 87, 171903 (2005)

    Article  Google Scholar 

  39. J.-S. Rhyee, K. Ahn, K.H. Lee, H.S. Ji, J.-H. Shim, Adv. Mater. 23, 2191 (2011)

    Article  Google Scholar 

  40. J.W. Sharp, E.H. Volckmann, H.J. Goldsmid, Phys. Stat. Sol. 185, 257 (2001)

    Article  Google Scholar 

  41. J.-S. Rhyee, D. Choi, J. Appl. Phys. 110, 083706 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0021335), Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030147), the Energy Efficiency and Resources program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20112010100100), and TJ Park Junior Faculty Fellowship funded by the POSCO TJ Park Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Soo Rhyee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rhyee, JS. (2013). The Peierls Distortion and Quasi-One-Dimensional Crystalline Materials of Indium Selenides. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_5

Download citation

Publish with us

Policies and ethics