Skip to main content

Naturally Nanostructured Thermoelectric Oxides

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

  • 4393 Accesses

Abstract

We have given an outline of our previous and on-going works related to naturally nanostructured thermoelectric oxides. One example is that buildup of different “nano-blocks” is effective to produce noble thermoelectric property as the intrinsic structure of thermoelectric materials. \({{\mathrm{Co}}_{3}}{{\mathrm{Co}}_{4}}{{\mathrm{O}}_{9}}\) and \({{\mathrm{Bi}}_{2}}{{\mathrm{Sr}}_{2}}{{\mathrm{Co}}_{2}}{{\mathrm{O}}_{9}}\) have intriguing crystal structure consisting of two blocks, such as \({\mathrm{CoO}}_{2}\) sub-lattice, and \({{\mathrm{Ca}}_{2}}{{\mathrm{CoO}}_{3}}\) and \({{\mathrm{Bi}}_{2}}{{\mathrm{Sr}}_{2}}{{\mathrm{O}}_{4}}\) sub-lattice, respectively. Once these two blocks are built up as “nano-blocks” in about 1.1–1.5 nm scale corresponding to the c-cell parameter, high dimensionless figure of merit ZT of ca. 1.1 at 973 K emerged in a single crystal of \({{\mathrm{Co}}_{3}}{{\mathrm{Co}}_{4}}{{\mathrm{O}}_{9}}\) and \({{\mathrm{Bi}}_{2}}{{\mathrm{Sr}}_{2}}{{\mathrm{Co}}_{2}}{{\mathrm{O}}_{9}}\) by harmony of the function of each part. However, power density of thermoelectric generation is 1–10 W/cm\(^{3}\) against device volume, so that bulk devices are indispensable for thermoelectric power application to generate kW or higher class output. The next challenge is to produce naturally nanostructure-controlled bulk oxides. \({{\mathrm{ZnMnGaO}}_{4}}\) and \({{\mathrm{Co}}_{1.5}}{{\mathrm{Mn}}_{1.5}}{{\mathrm{O}}_{4}}\) were taken as a model case for constructing a self-assembled nanostructure. By utilization of spinodal decomposition, these oxides have naturally formed characteristics nanostructures, such as nanochckerboard and twin-related domains, leading to low thermal conductivity of these oxides. This result would open up a possibility for realization of bulk oxides with high thermoelectric properties by nanostructure production via self organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Energy Outlook 2009 Edition, International World, Energy, 2009

    Google Scholar 

  2. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Int. Mat. Rev. 48, 45 (2003)

    Article  Google Scholar 

  3. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Jpn. J. Appl. Phys. 39, L1127 (2000)

    Article  Google Scholar 

  4. K. Fujita, T. Mochida, K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001)

    Article  Google Scholar 

  5. R. Funahashi, M. Shikano, Appl. Phys. Lett. 81, 1459 (2002)

    Article  Google Scholar 

  6. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685 (1997)

    Article  Google Scholar 

  7. R. Funahashi, M. Mikami, T. Mihara, S. Urata, N. Ando, J Appl. Phys. 99, 066117 (2006)

    Article  Google Scholar 

  8. S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, T. Tanaka, Int. Appl. Ceram. Technol. 4, 535 (2007)

    Article  Google Scholar 

  9. W. Kosibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62, 6869 (2000)

    Article  Google Scholar 

  10. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, Mater. Trans. 42, 956 (2001)

    Article  Google Scholar 

  11. M. Shikano, R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003)

    Article  Google Scholar 

  12. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, M. Mikami, Appl. Phys. Lett. 85, 1036 (2004)

    Article  Google Scholar 

  13. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  Google Scholar 

  14. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Nat. Mater. 6, 129 (2007)

    Article  Google Scholar 

  15. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  Google Scholar 

  16. S. Yeo, Y. Horibe, S. Mori, C.M. Tseng, C.H. Chen, A.G. Khachaturyan, C.L. Zhang, S.-W. Cheong, Appl. Phys. Lett. 89, 233120 (2006)

    Article  Google Scholar 

  17. C.L. Zhang, S. Yeo, Y. Horibe, Y.J. Choi, S. Guha, M. Croft, S.-W. Cheong, S. Mori, Appl. Phys. Lett. 90, 133123 (2007)

    Article  Google Scholar 

  18. A. Kosuga, K. Kurosaki, K. Yubuta, A. Charoenphakdee, S. Yamanaka, R. Funahashi, Jpn. J. Appl. Phys. 48, 010201 (2009)

    Article  Google Scholar 

  19. A. Kosuga, R. Funahashi (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Funahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Funahashi, R., Kosuga, A. (2013). Naturally Nanostructured Thermoelectric Oxides. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_15

Download citation

Publish with us

Policies and ethics