Skip to main content

A Linear Nonequilibrium Thermodynamics Approach to Optimization of Thermoelectric Devices

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focus on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For convenience, Callen formulates the postulates of thermodynamics only for simple systems, defined as systems that are large enough, macroscopically homogeneous, isotropic and uncharged; the surface effects can be neglected, and no external electric, magnetic, or gravitational fields acts on these systems.

  2. 2.

    One may imagine for instance two separate homogeneous systems initially prepared at two different temperatures and then put in thermal contact through a thin diathermal wall. The thermalization process will trigger a flow of energy from on system to the other.

  3. 3.

    One may see an analogy with a classical gas expansion.

  4. 4.

    This time reversal symmetry is broken under the application of Coriolis or magnetic forces.

  5. 5.

    An analogue situation would be considering a steam engine without any boiling walls.

References

  1. T.J. Seebeck, Abhandlungen Königliche Akademie der Wissenschaften zu Berlin, 289 (1821)

    Google Scholar 

  2. J.C.A. Peltier, Annales de Chimie Physique 56, 371 (1834)

    Google Scholar 

  3. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd revised edn. (Wiley, 1985)

    Google Scholar 

  4. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  Google Scholar 

  5. L. Onsager, Phys. Rev. 38, 2265 (1931)

    Article  Google Scholar 

  6. H.B. Callen, Phys. Rev. 73, 1349 (1948)

    Article  Google Scholar 

  7. C.A. Domenicali, Rev. Mod. Phys. 26, 237 (1954)

    Article  Google Scholar 

  8. M. Le Bellac, F. Mortessagne, G.G. Batrouni, Equilibrium and Non-Equilibrium Statistical Thermodynamics (Cambridge University Press, 2004)

    Google Scholar 

  9. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd edn. (Wiley, New York, 1968)

    Google Scholar 

  10. N. Pottier, Physique Statisitique Hors équilibre, Processus Irréversibles Linéaires (EDP Sciences/CNRS Editions, Paris, 2007)

    Google Scholar 

  11. Y. Rocard, Thermodynamique, 2nd edn. (Masson, Paris, 1967)

    Google Scholar 

  12. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    Article  Google Scholar 

  13. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  Google Scholar 

  14. A. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, ltd., London, 1957)

    Google Scholar 

  15. Y. Apertet, H. Ouerdane, C. Goupil, P. Lecoeur, J. Phys. Conf. Series 395, 012203 (2012)

    Article  Google Scholar 

  16. C. Goupil, W. Seifert, K. Zabrocki, E. Müller, G.J. Snyder, Entropy 13, 1481 (2011)

    Article  Google Scholar 

  17. M. Freunek, M. Müller, T. Ungan, W. Walker, L.M. Reindl, J. Electron. Mat. 38, 1214 (2009)

    Article  Google Scholar 

  18. P. Chambadal, Les Centrales Nucléaires (Armand Colin, 1957)

    Google Scholar 

  19. I.I. Novikov, J. Nucl. En. 7, 125 (1958)

    Google Scholar 

  20. F. Curzon, B. Ahlborn, Am. J. Phys 43, 22 (1975)

    Article  Google Scholar 

  21. A. Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  Google Scholar 

  22. J.W. Stevens, En. Conv. Manag. 42, 709 (2001)

    Article  Google Scholar 

  23. K. Yasawa, A. Shakouri, Environ. Sci. Technol. 45, 7548 (2011)

    Article  Google Scholar 

  24. D. Nemir, J. Beck, J. Electon. Mat 39, 1897 (2010)

    Article  Google Scholar 

  25. G.J. Snyder, T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003)

    Article  Google Scholar 

  26. C. Goupil, J. Appl. Phys. 106, 104907 (2009)

    Article  Google Scholar 

  27. B. Andresen, P. Salamon, R.S. Berry, J. Chem. Phys. 66, 1571 (1977)

    Article  Google Scholar 

  28. B. Andresen, R.S. Berry, A. Nitzan, P. Salamon, Phys. Rev. A 15, 2086 (1977)

    Article  Google Scholar 

  29. P. Salamon, B. Andresen, R.S. Berry, Phys. Rev. A 15, 2094 (1977)

    Article  Google Scholar 

  30. B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)

    Article  Google Scholar 

  31. Y. Apertet, H. Ouerdane, C. Goupil, P. Lecoeur, Phys. Rev. E 85, 031116 (2012)

    Article  Google Scholar 

  32. Y. Apertet, H. Ouerdane, C. Goupil, P. Lecoeur, Phys. Rev. E 85, 041144 (2012)

    Article  Google Scholar 

  33. C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  Google Scholar 

  34. M. Esposito, K. Lindenberg, C. Van den Broeck, Europhys. Lett. 85, 60010 (2009)

    Article  Google Scholar 

  35. T. Schmiedl, U. Seifert, Europhys. Lett. 81, 20003 (2008)

    Article  Google Scholar 

  36. Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, P. Lecoeur, Europhys. Lett. 97, 28001 (2012)

    Article  Google Scholar 

  37. Y. Apertet, H. Ouerdane, C. Goupil, P. Lecoeur, Phys. Rev. B 85, 033201 (2012)

    Article  Google Scholar 

  38. B.J. Van Wees et al., Phys. Rev. Lett. 60, 848 (1988)

    Article  Google Scholar 

  39. H. Van Houten, L.W. Molenkamp, C.W.J. Beenakker, C.T. Foxon, Semicond. Sci. Technol. B 215, 7 (1992)

    Google Scholar 

  40. C. Van den Broeck, Stochastic Thermodynamics (Springer, 1986)

    Google Scholar 

  41. U. Seifert, Eur. Phys. J. B 64, 423 (2008)

    Article  Google Scholar 

  42. K. Sekimoto, Stochastic Energetics (Springer, 2010)

    Google Scholar 

  43. M. Esposito, Phys. Rev. E 85, 041125 (2012)

    Article  Google Scholar 

  44. U. Sivain, Y. Imry, Phys. Rev. B 33, 551 (1986)

    Article  Google Scholar 

  45. T.E. Humphrey, H. Linke, Phys. Rev. Lett. 94, 096601 (2005)

    Article  Google Scholar 

  46. N. Nakpathomkun, H.Q. Xu, H. Linke, Phys. Rev. B 82, 235428 (2010)

    Article  Google Scholar 

  47. O. Karlström, H. Linke, G. Karlström, A. Wacker, Phys. Rev. B 84, 113415 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Goupil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ouerdane, H., Goupil, C., Apertet, Y., Michot, A., Abbout, A. (2013). A Linear Nonequilibrium Thermodynamics Approach to Optimization of Thermoelectric Devices. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_14

Download citation

Publish with us

Policies and ethics