Skip to main content

Material Design Considerations Based on Thermoelectric Quality Factor

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

In this chapter several aspects of the electronic and phonon structure are considered for the design and engineering of advanced thermoelectric materials. For a given compound, its thermoelectric figure of merit, zT, is fully exploited only when the free carrier density is optimized. Achieving higher zT beyond this requires the improvement in the material quality factor B. Using experimental data on lead chalcogenides as well as examples of other good thermoelectric materials, we demonstrate how the fundamental material parameters: effective mass, band anisotropy, deformation potential, and band degeneracy, among others, impact the thermoelectric properties and lead to desirable thermoelectric materials. As the quality factor B is introduced under the assumption of acoustic phonon (deformation potential) scattering, a brief discussion about carrier scattering mechanisms is also included. This simple model with the use of an effective deformation potential coefficient fits the experimental properties of real materials with complex structures and multi-valley Fermi surfaces remarkably well—which is fortunate as these are features likely found in advanced thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Chasmar, R. Stratton, J. Electron. Control 7, 52–72 (1959)

    Article  Google Scholar 

  2. H.J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  3. H.J. Goldsmid, Thermoelectric Refrigeration (Temple Press Books LTD, London, 1964)

    Book  Google Scholar 

  4. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments (Springer, Berlin, Heidelberg, 2001)

    Google Scholar 

  5. G.D. Mahan, Solid State Physics, (Academic Press Inc., San Diego , 1998), vol. 51, pp. 81–157

    Google Scholar 

  6. G.A. Slack, in CRC Thermoelectric Handbook, ed. by D.M. Rowe (CRC Press LLC, Boca Raton, 1995)

    Google Scholar 

  7. Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Energy Environ. Sci. 5(7), 7963–7969 (2012)

    Article  Google Scholar 

  8. C. Herring, Bell Syst. Tech. J. 34(2), 237–290 (1955)

    Article  Google Scholar 

  9. Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970)

    Book  Google Scholar 

  10. C. Herring, E. Vogt, Phys. Rev. 101(3), 944 (1956)

    Article  Google Scholar 

  11. Y. Takagiwa, Y. Pei, G. Pomrehn, G. J. Snyder, Appl. Phys. Lett. 101, 092102 (2012)

    Google Scholar 

  12. J. Bardeen, W. Shockley, Phys. Rev. 80(1), 72 (1950)

    Article  Google Scholar 

  13. E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, G.J. Snyder, Adv. Funct. Mater. 18(18), 2795–2800 (2008)

    Article  Google Scholar 

  14. A.F. May, E.S. Toberer, A. Saramat, G.J. Snyder, Phys. Rev. B 80(12), 125205 (2009)

    Article  Google Scholar 

  15. Y.I. Ravich, B.A. Efimova, V.I. Tamarchenko, Phys. Status Solidi B-Basic Res. 43(2), 453–469 (1971)

    Article  Google Scholar 

  16. L.G. Ferreira, Phys. Rev. 137(5A), 1601–1609 (1965)

    Google Scholar 

  17. K. Seeger, Semiconductor Physics An Introduction, 9th edn. (Springer, Berlin, Heidelberg, 2004)

    Google Scholar 

  18. H. Wang, Y. Pei, A.D. LaLonde, G.J. Snyder, Proc. Nat. Acad. Sci. 109(25), 9705–9709 (2012)

    Article  Google Scholar 

  19. G.E. Pikus, G.L. Bir, Sov. Phys. Solid State 1(11), 1502–1517 (1960)

    Google Scholar 

  20. G.L. Bir, G.E. Pikus, Sov. Phys. Solid State 2(9), 2039–2051 (1961)

    Google Scholar 

  21. M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80(4), 2234–2252 (1996)

    Article  Google Scholar 

  22. I.I. Zasavitskii, E. Silva, E. Abramof, P.J. McCann, Phys. Rev. B 70(11), 115302 (2004)

    Google Scholar 

  23. H.Z. Wu, N. Dai, P.J. McCann, Phys. Rev. B 66(4), 045303 (2002)

    Google Scholar 

  24. Springer Materials the Landolt-Börnstein Database

    Google Scholar 

  25. B.-L. Huang, M. Kaviany, Phys. Rev. B 77(12), 125209 (2008)

    Google Scholar 

  26. T. Caillat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80(8), 4442–4449 (1996)

    Article  Google Scholar 

  27. J.O. Sofo, G.D. Mahan, Phys. Rev. B 58(23), 15620–15623 (1998)

    Article  Google Scholar 

  28. J.L. Feldman, D.J. Singh, Phys. Rev. B 53(10), 6273–6282 (1996)

    Article  Google Scholar 

  29. A. May, J.-P. Fleurial, G. Snyder, Phys. Rev. B 78(12), 125205 (2008)

    Google Scholar 

  30. A.F. May, D.J. Singh, G.J. Snyder, Phys. Rev. B 79(15), 153101 (2009)

    Article  Google Scholar 

  31. K. Tukioka, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 30(2), 212–217 (1991)

    Google Scholar 

  32. B.M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific Publishing Co. Pte. Ltd., Singapor, 1991)

    Google Scholar 

  33. D.J. Howarth, E.H. Sondheimer, Proc. Royal Society Lond. Ser. Math. Phys. sci. 219(1136), 53–74 (1953)

    Google Scholar 

  34. V.W.L. Chin, R.J. Egan, T.L. Tansley, J. Appl. Phys. 69(6), 3571–3577 (1991)

    Article  Google Scholar 

  35. D.I. Bilc, S.D. Mahanti, M.G. Kanatzidis, Phys. Rev. B 74(12), 125202 (2006)

    Article  Google Scholar 

  36. L.Y. Morgovskii, Y.I. Ravich, Soviet Physics Semiconductors-Ussr 5(5), 860 (1971)

    Google Scholar 

  37. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55(3), 645–705 (1983)

    Article  Google Scholar 

  38. W.A. Harrison, Phys. Rev. 104(5), 1281 (1956)

    Article  Google Scholar 

  39. K. Takeda, N. Matsumoto, J. Phys. C-Solid State Phys. 17(28), 5001–5015 (1984)

    Article  Google Scholar 

  40. J.D. Wiley, M. Didomeni, Phys. Rev. B 2(2), 427 (1970)

    Google Scholar 

  41. J.D. Wiley, Solid State Commun. 8(22), 1865–1868 (1970)

    Article  Google Scholar 

  42. M. Costato, G. Gagliani, C. Jacoboni, L. Reggiani, J. Phys. Chem. Solids 35(12), 1605–1614 (1974)

    Article  Google Scholar 

  43. Y.I. Ravich, Sov. Phys. Semiconductors-Ussr 3(10), 1278 (1970)

    Google Scholar 

  44. R. Dalven, Phys. Rev. B 3(6), 1953–1954 (1971)

    Article  Google Scholar 

  45. H. Ehrenreich, J. Appl. Phys. 32(10), 2155–2166 (1961)

    Article  Google Scholar 

  46. D.L. Rode, Phys. Rev. B 2(4), 1012–1024 (1970)

    Article  Google Scholar 

  47. D.L. Rode, Phys. Rev. B-Solid State 2(10), 4036–4044 (1970)

    Article  Google Scholar 

  48. A.R. Hutson, Phys. Rev. 108(2), 222–230 (1957)

    Article  Google Scholar 

  49. Y.I. Ravich, B.A. Efimova, V.I. Tamarchenko, Phys. Status Solidi B-Basic Res. 43(1), 11–33 (1971)

    Article  Google Scholar 

  50. D.M. Zayachuk, Semiconductors 31(2), 173–176 (1997)

    Article  Google Scholar 

  51. C.M. Bhandari, D.M. Rowe, J. Phys. D: Appl. Phys. 18(5), 873 (1985)

    Article  Google Scholar 

  52. R.L. Petritz, W.W. Scanlon, Phys. Rev. 97(6), 1620–1626 (1955)

    Article  Google Scholar 

  53. S. Johnsen, J.Q. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, M.G. Kanatzidis, J. Am. Chem. Soc. 133(10), 3460–3470 (2011)

    Article  Google Scholar 

  54. R.S. Allgaier, W.W. Scanlon, Phy. Rev. 111(4), 1029–1037 (1958)

    Article  Google Scholar 

  55. L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133(50), 20476–20487 (2011)

    Article  Google Scholar 

  56. H. Wang, E. Schechtel, Y. Pei and G. J. Snyder, Adv. Energy Mater. 3, 488–498 (2013)

    Google Scholar 

  57. E.G. Bylander, M. Hass, Solid State Commun. 4(1), 51–53 (1966)

    Article  Google Scholar 

  58. Y. Kanai, K. Shohno, Jpn. J. Appl. Phys. 2, 6–10 (1963)

    Article  Google Scholar 

  59. Y. I. Ravich, in Lead Chalcogenides Physics and Applications, vol. 18, ed. by D. Khokhlov (Taylor and Francis, New York, 2003)

    Google Scholar 

  60. P. Ghosez, M. Veithen, J. Phys.-Condes. Matter 19(9), 096002 (2007)

    Google Scholar 

  61. G. Kliche, Infrared Phys. 24(2), 171–177 (1984)

    Google Scholar 

  62. G.S. Nolas, G.A. Slack, T. Caillat, G.P. Meisner, J. Appl. Phys. 79(5), 2622–2626 (1996)

    Article  Google Scholar 

  63. L. Chaput, J. Tobola, P. Pécheur, H. Scherrer, Phys. Rev. B 73(4), 045121 (2006)

    Google Scholar 

  64. P. Larson, S.D. Mahanti, M.G. Kanatzidis, Phys. Rev. B 62(19), 12754–12762 (2000)

    Article  Google Scholar 

  65. T.J. Zhu, K. Xiao, C. Yu, J.J. Shen, S.H. Yang, A.J. Zhou, X.B. Zhao, J. He, J. Appl. Phys. 108(4), 044903–044905 (2010)

    Article  Google Scholar 

  66. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, J. He, Acta Mater. 57(9), 2757–2764 (2009)

    Article  Google Scholar 

  67. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, L.D. Chen, J. Am. Chem. Soc. 133(20), 7837–7846 (2011)

    Article  Google Scholar 

  68. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473(7345), 66–69 (2011)

    Article  Google Scholar 

  69. Y. Takagiwa, Y. Pei, G. Pomrehn, G. J. Snyder, APL Materials in press (2013)

    Google Scholar 

  70. Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, Energy Environ. Sci. 4, 2085–2089 (2011)

    Article  Google Scholar 

  71. H. Wang, Y. Pei, A.D. Lalonde, G.J. Snyder, Adv. Mater. 23(11), 1366–1370 (2011)

    Article  Google Scholar 

  72. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Phys. Rev. B 74(4), 045207 (2006)

    Google Scholar 

  73. S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, J.-P. Fleurial, J. Mater. Chem. 21(33), 12259 (2011)

    Article  Google Scholar 

  74. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Phys. Rev. Lett. 108(16), 166601 (2012)

    Article  Google Scholar 

  75. X. Liu, H. Wang, L. Hu, H. Xie, G. Jiang, G. J. Snyder, X. Zhao, T. Zhu, Adv. Energ. Mater. doi:10.1002/aenm.201300174 (2013)

  76. D.A. Pshenay-Severin, M.I. Fedorov, Phys. Solid State 49(9), 1633–1637 (2007)

    Article  Google Scholar 

  77. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, T.M. Tritt, Appl. Phys. Lett. 93(10), 102109 (2008)

    Article  Google Scholar 

  78. F. Ben Zid, A. Bhouri, H. Mejri, M. Said, N. Bouarissa, J.L. Lazzari, F.A. d’Avitaya, J. Derrien, Physica B 322(3–4), 225–235 (2002)

    Article  Google Scholar 

  79. P.E. Batson, J.F. Morar, Appl. Phys. Lett. 59(25), 3285–3287 (1991)

    Article  Google Scholar 

  80. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93(19), 193121 (2008)

    Article  Google Scholar 

  81. M.N. Tripathi, C.M. Bhandari, J. Phys. Condes. Matter 15(31), 5359–5370 (2003)

    Google Scholar 

  82. A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Phys. Rev. B 80(15), 155327 (2009)

    Article  Google Scholar 

  83. G.A. Slack, M.A. Hussain, J. Appl. Phys. 70(5), 2694–2718 (1991)

    Article  Google Scholar 

  84. M. I. Fedorov, D. A. Pshenay-Severin, V. K. Zaitsev, S. Sano, M. V. Vedernikov, Features of Conduction Mechanism in n-type Mg2Si1-xSnx Solid Solutions. (IEEE, New York, 2003)

    Google Scholar 

  85. D.A. Pshenay-Severin, M.I. Fedorov, Phys. Solid State 52(7), 1342–1347 (2010)

    Article  Google Scholar 

  86. H. Brooks, Theory of the Electrical Properties of Germanium Silicon (Academic Press Inc, NY, 1955)

    Google Scholar 

  87. W.P. Mason, T.B. Bateman, Phys. Rev. Lett. 10(5), 151–154 (1963)

    Article  Google Scholar 

  88. C.B. Vining, J. Appl. Phys. 69(1), 331–341 (1991)

    Article  Google Scholar 

  89. D. Long, Phy. Rev. 120(6), 2024–2032 (1960)

    Article  Google Scholar 

  90. J.E. Aubrey, W. Gubler, T. Henningsen, S.H. Koenig, Phys. Rev. 130(5), 1667–1670 (1963)

    Article  Google Scholar 

  91. F.J. Morin, J.P. Maita, Phys. Rev. 96(1), 28–35 (1954)

    Article  Google Scholar 

  92. G.W. Ludwig, R.L. Watters, Phys. Rev. 101(6), 1699–1701 (1956)

    Article  Google Scholar 

  93. J.G. Nash, J.W. Holmkennedy, Phys. Rev. B 15(8), 3994–4006 (1977)

    Article  Google Scholar 

  94. P.D. Yoder, V.D. Natoli, R.M. Martin, J. Appl. Phys. 73(9), 4378–4383 (1993)

    Article  Google Scholar 

  95. S.V. Obukhov, V.G. Tyuterev, Phys. Solid State 51(6), 1110–1113 (2009)

    Article  Google Scholar 

  96. Z. Wang, S. D. Wang, S. Obukhov, N. Vast, J. Sjakste, V. Tyuterev, N. Mingo, Phys. Rev. B 83(20), 205208 (2011)

    Google Scholar 

  97. F. Murphy-Armando, S. Fahy, Phys. Rev. B 78(3), 035202 (2008)

    Google Scholar 

  98. D.M. Rowe, C.M. Bhandari, J. Phys. Lett. 46(1), L49–L52 (1985)

    Article  Google Scholar 

  99. H. Wang, A.D. LaLonde, Y. Pei, and G. J. Snyder, Adv. Funct. Mater. 23, 1586–1596, (2013)

    Google Scholar 

  100. Y. Z. Pei, A. D. LaLonde, N. A. Heinz, X. Y. Shi, S. Iwanaga, H. Wang, L. D. Chen, G. J. Snyder, Adv. Mater. 23(47), 5674–5678 (2011)

    Google Scholar 

  101. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321(5888), 554–557 (2008)

    Google Scholar 

  102. C.M. Jaworski, B. Wiendlocha, V. Jovovic, J.P. Heremans, Energy Environ. Sci. 4, 4155–4162 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, H., Pei, Y., LaLonde, A.D., Jeffery Snyder, G. (2013). Material Design Considerations Based on Thermoelectric Quality Factor. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_1

Download citation

Publish with us

Policies and ethics