Skip to main content

Theoretical Chemistry of the Heaviest Elements

  • Chapter
  • First Online:
The Chemistry of Superheavy Elements

Abstract

Theoretical chemical research in the area of the heaviest elements is extremely important. It deals with predictions of properties of exotic species and their behavior in sophisticated and expensive experiments with single atoms and permits the interpretation of experimental results. Spectacular developments in the relativistic quantum theory and computational algorithms have allowed for accurate calculations of electronic structures of the heaviest elements and their compounds. Due to the experimental restrictions in this area, the theoretical studies are often the only source of useful chemical information. The works on relativistic calculations and predictions of chemical properties of elements with Z ≥ 104 are overviewed. Preference is given to those related to the experimental research. The increasingly important role of relativistic effects in this part of the Periodic Table is demonstrated.

An erratum to this chapter is available at 10.1007/978-3-642-37466-1_10

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-37466-1_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fricke, B., Waber, J.T.: Theoretical predictions of the chemistry of superheavy elements. Actinide Rev. 1, 433–485 (1971)

    CAS  Google Scholar 

  2. Fricke, B.: Superheavy elements. A prediction of their chemical and physical properties. Struct. Bond. 21, 89–144 (1975)

    CAS  Google Scholar 

  3. Keller Jr, O.L., Seaborg, G.T.: Chemistry of the transactinide elements. Ann. Rev. Nucl. Sci. 27, 139–166 (1977)

    CAS  Google Scholar 

  4. Seaborg, G.T., Keller, O.L., Jr: Future elements. In: Katz, J.J., Seaborg, G.T., Morss, L.R. (eds.) The Chemistry of the Actinide Elements, 2nd edn, vol. 2, pp. 1629–1646. Chapman and Hall, London (1986)

    Google Scholar 

  5. Seaborg, G.T.: Evolution of the modern periodic table. J. Chem. Soc. Dalton Trans. 3899–3907 (1996)

    Google Scholar 

  6. Pershina, V.: Electronic structure and properties of the transactinides and their compounds. Chem. Rev. 96, 1977–2010 (1996)

    CAS  Google Scholar 

  7. Pershina, V., Kratz, J.V.: Experimental and theoretical studies of the chemistry of the heaviest elements. In: Hess, B.A. (ed.) Relativistic Effects in Heavy-Element Chemistry and Physics, pp. 219–244. Wiley, New York (1997)

    Google Scholar 

  8. Schwerdtfeger, P., Seth, M.: Relativistic effects on the superheavy elements. In: von Rague Schleyer, P (ed.) Encyclopedia on Calculational Chemistry, vol. 1, pp. 2480–2499. Wiley, New York (1998)

    Google Scholar 

  9. Pershina, V., Fricke, B.: Electronic structure and chemistry of the heaviest elements. In: Greiner, W., Gupta, R.K. (eds.) Heavy Elements and Related New Phenomena, pp. 194–162. World Scientific, Singapore (1999)

    Google Scholar 

  10. Pershina, V.: The Chemistry of the superheavy elements and relativistic effects. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part II, pp. 1–80. Elsevier, Amsterdam (2002)

    Google Scholar 

  11. Pershina, V.: Theoretical chemistry of the heaviest elements. In: Schädel, M. (ed.) The Chemistry of Superheavy Elements, pp. 31–94. Kluwer, Dordrecht (2003)

    Google Scholar 

  12. Hoffman, D.C., Lee, D.M., Pershina, V.: Transactinide elements and future elements. In: Morss, L.R., Edelstein, N.M., Fuger, J., Katz, J.J. (eds.) The Chemistry of the Actinide and Transactinide Elements, vol. 3, 3d edn, pp. 1652–1752. Springer, Dordrecht (2006)

    Google Scholar 

  13. Pershina, V.: Electronic structure and chemistry of the heaviest elements. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, pp. 452–520. Springer, Dordrecht (2010)

    Google Scholar 

  14. Pershina, V.: Relativistic electronic structure studies on the heaviest elements. Radiochim. Acta 99, 459–476 (2011)

    CAS  Google Scholar 

  15. Cotton, S.A.: After the actinides, then what? Chem. Soc. Rev. 25, 219–227 (1996)

    CAS  Google Scholar 

  16. Seaborg, G.T., Metallurgical Laboratory Memorandum MUC-GTS-858, 17 July 1944

    Google Scholar 

  17. Seaborg, G.T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190–2193 (1945)

    CAS  Google Scholar 

  18. Mann, J.B.: Stability of 8p electrons in superheavy elements. J. Chem. Phys. 51, 841–842 (1969)

    CAS  Google Scholar 

  19. Mann, J.B., Waber, J.T.: SCF relativistic Hartree-Fock calculations on the superheavy elements 118–131. J. Chem. Phys. 53, 2397–2406 (1970)

    CAS  Google Scholar 

  20. Fricke, B., Greiner, W., Waber, J.T.: The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements. Theoret. Chim. Acta 21, 235–260 (1971)

    Google Scholar 

  21. Desclaux, J.P.: Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 12, 311–386 (1973)

    CAS  Google Scholar 

  22. Nefedov, V.I., Yarzhemcky, V.G., Trzhaskovskaya, M.B.: Periodic low as applied to superheavy elements: Specific features arising from relativistic effects. Russ. J. Inorg. Chem. 49, 1871–1874 (2004)

    Google Scholar 

  23. Desclaux, J.P., Fricke, B.: Relativistic prediction of the ground state of atomic lawrencium. J. Phys. 41, 943–946 (1980)

    CAS  Google Scholar 

  24. Glebov, V.A., Kasztura, L., Nefedov, V.S., Zhuikov, B.L.: Is element 104 (kurchatovium) a p-element? II. Relativistic calculations of the electronic atomic structure. Radiochim. Acta 46, 117–121 (1989)

    CAS  Google Scholar 

  25. Johnson, E., Fricke, B., Keller Jr, O.L., Nestor Jr, C.W., Tucker, T.C.: Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived form multiconfiguration Dirac-Fock calculations. J. Chem. Phys. 93, 8041–8050 (1990)

    CAS  Google Scholar 

  26. Fricke, B., Johnson, E., Rivera, G.M.: Ionization potentials and radii of atoms and ions of element 105 (unnilpentium) and ions of tantalum derived from multiconfiguration Dirac-Fock calculations. Radiochim. Acta 62, 17–25 (1993)

    CAS  Google Scholar 

  27. Johnson, E., Pershina, V., Fricke, B.: Ionization potentials of seaborgium. J. Phys. Chem. 103, 8458–8462 (1999)

    CAS  Google Scholar 

  28. Johnson, E., Fricke, B., Jacob, T., Dong, C.Z., Fritzsche, S., Pershina, V.: Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J. Phys. Chem. 116, 1862–1868 (2002)

    CAS  Google Scholar 

  29. Pyper, N.C., Grant, I.P.: Theoretical chemistry of the 7p series of superheavy elements. I. Atomic structure studies by multi-configuration Dirac-Fock theory. Proc. R. Soc. Lond. A 376, 483–492 (1981)

    Google Scholar 

  30. Nefedov, V.I., Trzhaskovskaya, M.B., Yarzhemcky, V.G.: Electronic configurations and the Periodic Table for superheavy elements. Doklady Phys. Chim. 408, 149–151 (2006)

    CAS  Google Scholar 

  31. Pyykkö, P.: A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161–168 (2011)

    Google Scholar 

  32. Kaldor, U., Eliav, E.: Energies and other properties of heavy atoms and molecules. In: Hernandes-Laguna, A., Maruani, J., Mcweeny, R., Wilson, S. (eds.) Quantum Systems in Chemistry and Physics, vol. I, pp. 161–176. Kluwer, Dordrecht (2000)

    Google Scholar 

  33. Eliav, E., Kaldor, U.: Four-component electronic structure methods. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, pp. 279–350. Springer, Dordrecht (2010)

    Google Scholar 

  34. Eliav, E., Shmulyian, S., Kaldor, U., Ishikawa, Y.: Transition energies of lanthanum, actinium, and eka-actinium (element 121). J. Chem. Phys. 109, 3954 (1998)

    CAS  Google Scholar 

  35. Eliav, E., Landau, A., Ishikawa, Y., Kaldor, U.: Electronic structure of eka-thorium (element 122) compared with thorium. J. Phys. B. 35, 1693 (2002)

    CAS  Google Scholar 

  36. Indelicato, P., Bieron, J., Jönnson, P.: Are MCDF calculations 101% correct in the superheavy element range? Theor. Chem. Acc. 129, 495–505 (2011)

    CAS  Google Scholar 

  37. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Google Scholar 

  38. Schwarz, W.H.E., van Wezenbeck, E., Snijders, J.G., Baerends, E.J.: The origin of relativistic effects of atomic orbitals. J. Phys. B. 22, 1515–1530 (1989)

    CAS  Google Scholar 

  39. Baerends, E.J., Schwarz, W.H.E., Schwerdtfeger, P., Snijders, J.G.: Relativistic atomic orbital contractions and expansions: magnitude and explanations. J. Phys. B. 23, 3225–3240 (1990)

    CAS  Google Scholar 

  40. Onoe, J.: Atomic-number dependence of relativistic effects on chemical bonding. Adv. Quant. Chem. 37, 311–323 (2000)

    CAS  Google Scholar 

  41. Autschbach, J., Siekierski, S., Schwerdtfeger, P., Seth, M., Schwarz, W.H.E.: Dependence of relativistic effects on electronic configuration in the neutral atoms of d- and f-block elements. J. Comput. Chem. 23, 804–813 (2002)

    CAS  Google Scholar 

  42. Labzowsky, L.N., Goidenko, I.: QED theory of atoms. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 401–467. Elsevier, Amsterdam (2002)

    Google Scholar 

  43. Lindgren, I.: Relativistic many-body and QED calculations on atomic systems. Int. J. Quant. Chem. 57, 683–695 (1996)

    CAS  Google Scholar 

  44. Gaston, N., Schwerdtfeger, P., Nazarewicz, W.: Ionization potential of internal conversion electrons for the superheavy elements 112, 114 116, and 118. Phys. Rev. A 66, 062505(10) (2002)

    Google Scholar 

  45. Thierfelder, C., Schwerdtfeger, P., Hessberger, F.P., Hofmann, S.: Dirac-Hartree-Fock studies of X-ray transitions in meitnerium. Eur. Phys. J. A 36, 227–231 (2008)

    CAS  Google Scholar 

  46. Pyykkö, P., Tokman, M., Labzowsky, L.N.: Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys. Rev. A 57, R689–R692 (1998)

    Google Scholar 

  47. Thierfelder, C., Schwerdtfeger, P.: Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms. Phys. Rev. A 82, 062503(10) (2010)

    Google Scholar 

  48. Goidenko, I., Labsowsky, L., Eliav, E., Kaldor, U., Pyykkö, P.: QED effects to the binding energy of the eka-radon (Z = 118) negative ion. Phys. Rev. A 67, 020102R(1–3) (2003)

    Google Scholar 

  49. Sucher, J.: Foundation of the relativistic theory of many-electron atoms. Phys. Rev. A 22, 348–362 (1980)

    CAS  Google Scholar 

  50. DIRAC package. Dirac, a relativistic ab initio electronic structure program, written by Aa, H.J., Jensen, T.S., Visscher, L. with contributions from Bakken, V., Eliav, E., Enevoldsen, T., Fleig, T., Fossgaard, O., Helgaker, T., Laerdahl, J., Larsen, C.V., Norman, P., Olsen, J., Pernpointner, M., Pedersen, J.K., Ruud, K., Salek, P., van Stralen, J.N.P., Thyssen, J., Visser, O., Winther, T. (http://dirac.chem.sdu.dk)

    Google Scholar 

  51. Malli, G., da Silva, A.B.F., Ishikawa, Y.: Highly accurate relativistic universal Gaussian basis set: Dirac-Fock-Coulomb calculations for atomic systems up to nobelium. J. Chem. Phys. 101, 6829–6834 (1994)

    Google Scholar 

  52. Visscher, L., Aerts, P.J.C., Visser, O., Nieuwpoort, W.C.: Kinetic balance in contracted basis sets for relativistic calculations. Int. J. Quant. Chem. 40, 131–139 (1991)

    Google Scholar 

  53. Faegri, K.: Relativistic Gaussian basis sets for the elements K-Uuo. Theor. Chem. Acc. 105, 252–258 (2001)

    CAS  Google Scholar 

  54. Faegri, K., Dyall, K.G.: Basis sets for relativistic calculations. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 259–290. Elsevier, Amsterdam (2002)

    Google Scholar 

  55. Dyall, K.: Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 7p elements, with atomic and molecular applications. Theor. Chem. Acc. 131, 1172–1174 (2012)

    Google Scholar 

  56. Guilherme, L., de Macedo, M., Borin, A.C., da Silva, A.B.F.: Prolapse-free relativistic Gaussian basis sets for the superheavy elements up to Uuo (Z = 118) and Lr (Z = 103). At. Data Nucl. Data Tables 93, 931–961 (2007)

    Google Scholar 

  57. Desclaux, J.P.: A multiconfiguration relativistic Dirac-Fock program. Comp. Phys. Comm. 9, 31–45 (1975)

    Google Scholar 

  58. Grant, I.P.: Variational methods for Dirac wave equations. J. Phys. B 19, 3187–3206 (1986)

    CAS  Google Scholar 

  59. Parpia, F.A., Froese-Fisher, S., Grant, I.P.: GRASP92: A package for large-scale relativistic atomic structure calculations. Comp. Phys. Comm. 175, 745–747 (2006)

    CAS  Google Scholar 

  60. Balasubramanian, K.: Relativistic computations of the electronic states of the superheavy element 114 and 114+. Chem. Phys. Lett. 341, 601–607 (2001); ibid, Erratum. 351, 161–162 (2002)

    Google Scholar 

  61. Schwerdtfeger, P. (ed.): Relativistic Electronic Structure Theory. Parts I and II. Elsevier, Amsterdam (2002)

    Google Scholar 

  62. Dyall, K.G., Faegri, K., Jr.: Relativistic Quantum Chemistry, Oxford University Press, New York (2007)

    Google Scholar 

  63. Barysz, M., Ishikawa, Y. (eds.): Relativistic Methods for Chemists, Springer, Dordrecht (2010)

    Google Scholar 

  64. Visscher, L.: Post-Dirac-Fock methods. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 291–331. Elsevier, Amsterdam (2002)

    Google Scholar 

  65. Saue, T.: Post Dirac-Fock-methods-properties. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 332–397. Elsevier, Amsterdam (2002)

    Google Scholar 

  66. Wolf, A., Reiher, M., Hess, B.A.: Two-component methods and the generalized Douglas-Kroll-Transformation. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 622–663. Elsevier, Amsterdam (2002)

    Google Scholar 

  67. Barysz, M.: Two-component relativistic theories. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, pp. 165–190. Springer, Dordrecht (2010)

    Google Scholar 

  68. Douglas, M., Kroll, N.M.: Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 82, 89–155 (1974)

    CAS  Google Scholar 

  69. Kutzelnigg, W.: The relativistic many-body problem in molecular theory. Phys. Scr. 36, 416–431 (1987)

    CAS  Google Scholar 

  70. Dolg, M.: Relativistic effective core potentials. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 793–862. Elsevier, Amsterdam (2002)

    Google Scholar 

  71. Schwerdfeger, P.: The pseudopotential approximation in electronic structure theory. Chem. Phys. Chem. 12, 3143–3155 (2011)

    Google Scholar 

  72. Huzinaga, S., Cantu, A.A.: Theory of separability of many-electron systems. J. Chem. Phys. 55, 5543–5549 (1971)

    CAS  Google Scholar 

  73. Seijo, L., Barandiaran, Z.: Relativistic ab initio model potentials calculations for molecules and embedded clusters. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 417–475. Elsevier, Amsterdam (2002)

    Google Scholar 

  74. Lee, Y.S.: Two-component relativistic effective core potential calculations for molecules. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part II, pp. 352–416. Elsevier, Amsterdam (2002)

    Google Scholar 

  75. Cao, X., Dolg, M.: Relativistic pseudopotentials. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, pp. 215–270. Springer, Dordrecht (2010)

    Google Scholar 

  76. Lee, Y.L., Ermler, W.C., Pitzer, R.M.: Ab initio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms. J. Chem. Phys. 67, 5861–5876 (1977)

    CAS  Google Scholar 

  77. Nash, C.S., Bursten, B.E., Ermler, W.C.: Ab initio relativistic effective potentials with spin-orbit operators. VII. Am through element 118. J. Chem. Phys. 106, 5153–5142 (1997)

    Google Scholar 

  78. Schwerdtfeger, P., Seth, M.: Private communication (2011)

    Google Scholar 

  79. Hangle, T., Dolg, M., Hanrath, M., Cao, X., Stoll, H., Schwerdtfeger, P.: Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects. J. Chem. Phys. 136, 214105 (1–10) (2012)

    Google Scholar 

  80. Kahn, L.R., Hay, P.J., Cowan, R.D.: Relativistic effects in ab initio effective core potentials for molecular calculations. Applications to the uranium atom. J. Chem. Phys. 68, 2386–2398 (1978)

    CAS  Google Scholar 

  81. Hay, P.J.: Ab initio studies of exited states of polyatomic molecules including spin-orbit and multiplet effects: The electronic states of UF6. J. Chem. Phys. 79, 5469–5483 (1983)

    CAS  Google Scholar 

  82. Titov, A.V., Mosyagin, N.S.: Generalized relativistic effective core potentials: Theoretical grounds. Int. J. Quant. Chem. 71, 359–401 (1999)

    Google Scholar 

  83. Kohn, W., Becke, A.D., Parr, R.G.: Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996)

    CAS  Google Scholar 

  84. Rosen, A.: Twenty to thirty years of DV-Xα calculations: A survey of accuracy and applications. Adv. Quant. Chem. 29, 1–47 (1997)

    CAS  Google Scholar 

  85. Engel, E.: Relativistic density functional theory: Foundations and basic formalism. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 523–621. Elsevier, Amsterdam (2002)

    Google Scholar 

  86. van Wüllen, C.: Relativistic density functional theory. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, pp. 191–214. Springer, Dordrecht (2010)

    Google Scholar 

  87. Anton, J., Fricke, B., Engel, E.: Noncollinear and collinear relativistic density-functional program for electric and magnetic properties of molecules. Phys. Rev. A 69, 012505(10) (2004)

    Google Scholar 

  88. Jacob, T., Geschke, D., Fritzsche, S., Sepp, W.-D., Fricke, B., Anton, J., Varga, S.: Adsorption on surfaces simulated by an embedded cluster approach within the relativistic density functional theory. Surf. Sci. 486, 194–202 (2001)

    CAS  Google Scholar 

  89. Liu, W., Hong, G., Dai, D., Li, L., Dolg, M.: The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO, and YbS. Theor. Chem. Acc. 96, 75–83 (1997)

    CAS  Google Scholar 

  90. Rosen, A., Ellis, D.E.: Relativistic molecular calculations in the Dirac-Slater model. J. Chem. Phys. 62, 3039–3049 (1975)

    CAS  Google Scholar 

  91. Mitin, A.V., van Wüllen, C.: Two-component relativistic density-functional calculations of the dimers of the halogens from bromide through element 117 using effective core potential and all-electron methods. J. Chem. Phys. 124, 064305(7) (2006)

    Google Scholar 

  92. ADF, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands (www.scm.com)

    Google Scholar 

  93. Ziegler, T., Tschinke, V., Baerends, E.J., Snijders, J.G., Ravenek, W.: Calculations of bond energies in compounds of heavy elements by a quasi-relativistic approach. J. Phys. Chem. 93, 3050–3056 (1989)

    CAS  Google Scholar 

  94. van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic total energy using regular approximation. J. Chem. Phys. 101, 9783–9792 (1994)

    Google Scholar 

  95. Sundholm, D.: Perturbation theory based on quasi-relativistic hamiltonians. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 758–792. Elsevier, Amsterdam (2002)

    Google Scholar 

  96. Faas, S., van Lenthe, J.H., Hennum, A.C., Snijders, J.G.: An ab initio two-component relativistic methods including spin-orbit coupling using the regular approximation. Chem. Phys. 113, 4052–4059 (2000)

    CAS  Google Scholar 

  97. Hess, B.A.: Relativistic electronic structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33, 3742–3748 (1986)

    CAS  Google Scholar 

  98. van Wüllen, C.: Relation between different variants of the generalized Douglas-Kroll transformation through sixth order. J. Chem. Phys. 120, 7307–7313 (2004)

    Google Scholar 

  99. Nasluzov, V.A., Rösch, N.: Density functional based structure optimization for molecules containing heavy elements: Analytical energy gradients for the Douglas-Kroll-Hess scalar relativistic approach to the LCGTO-DF method. Chem. Phys. 210, 413–425 (1996)

    CAS  Google Scholar 

  100. Häberlen, O.D., Chung, S.-C., Stener, M., Rösch, N.: From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Au n , n = 6,…, 147. J. Chem. Phys. 106, 5189–5201 (1997)

    Google Scholar 

  101. Ziegler, T., Snijders, J.G., Baerends, E.J.: On the origin of relativistic bond contraction. Chem. Phys. Lett. 75, 1–4 (1980)

    CAS  Google Scholar 

  102. Case, D.A., Yang, C.Y.: Relativistic scattered wave calculations on UF6. J. Chem. Phys. 72, 3443–3448 (1980)

    CAS  Google Scholar 

  103. Eschrig, H., Richter, M., Opahle, I.: Relativistic solid state calculations. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part I, pp. 723–776. Elsevier, Amsterdam (2002)

    Google Scholar 

  104. Collins, C.L., Dyall, K.G., Schaeffer, H.F., III: Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic methods. J. Chem. Phys. 102, 2024–2031 (1995)

    Google Scholar 

  105. Dyall, K.G.: Second-order Möller-Plesset perturbation theory for molecular Dirac-Hartree-Foch wavefunctions. Theory for up to two open-shell electrons. Chem. Phys. Lett. 224, 186–194 (1994)

    Google Scholar 

  106. Kaldor, U., Hess, B.A.: Relativistic all-electron coupled-cluster calculations on the gold atom and gold hydride in the framework of the Douglas-Kroll transformation. Chem. Phys. Lett. 230, 1–7 (1994)

    CAS  Google Scholar 

  107. Schwerdtfeger, P., Brown, J.R., Laerdahl, J.K., Stoll, H.: The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH. J. Chem. Phys. 113, 7110–7118 (2000)

    CAS  Google Scholar 

  108. Lee, H.-S., Han, Y.-K., Kim, M.C., Bae, C., Lee, Y.S.: Spin-orbit effects calculated by two-component coupled-cluster methods: Test calculations on AuH, Au2, TiH and Tl2. Chem. Phys. Lett. 293, 97–102 (1998)

    CAS  Google Scholar 

  109. Liu, W., van Wüllen, C.: Spectroscopic constants of gold and eka-gold (element 111) diatomic compounds: the importance of spin-orbit coupling. J. Chem. Phys. 110, 3730–3735 (1999)

    CAS  Google Scholar 

  110. Huber, K.P., Herzberg, G.: Constants of Diatomic Molecules. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  111. Pyykkö, P.: Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 3312–4456 (2004)

    Google Scholar 

  112. Eliav, E., Kaldor, U., Ishikawa, Y.: Ground state electron configuration of rutherfordium: Role of dynamic correlation. Phys. Rev. Lett. 74, 1079–1082 (1995)

    CAS  Google Scholar 

  113. Eliav, E., Kaldor, U., Schwerdtfeger, P., Hess, B.A., Ishikawa, Y.: Ground state electron configuration of element 111. Phys. Rev. Lett. 73, 3203–3206 (1994)

    CAS  Google Scholar 

  114. Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies in mercury and eka-mercury (element 112) by the relativistic coupled-cluster method. Phys. Rev. A 52, 2765–2769 (1995)

    CAS  Google Scholar 

  115. Eliav, E., Kaldor, U., Ishikawa, Y., Seth, M., Pyykkö, P.: Calculated energy levels of thallium and eka-thallium (element 113). Phys. Rev. A 53, 3926–3933 (1996)

    CAS  Google Scholar 

  116. Landau, A., Eliav, E., Ishikawa, Y., Kaldor, U.: Electronic structure of eka-lead (element 114) compared with lead. J. Chem. Phys. 114, 2977–2980 (2001)

    CAS  Google Scholar 

  117. Eliav, E., Kaldor, U., Ishikawa, Y.: The relativistic coupled-cluster method: transition energies of bismuth and eka-bismuth. Mol. Phys. 94, 181–187 (1998)

    CAS  Google Scholar 

  118. Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.: Element 118: The first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350–5352 (1996)

    CAS  Google Scholar 

  119. Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Adsorption of inert gases including element 118 on noble metal and inert surfaces from ab initio Dirac–Coulomb atomic calculations. J. Chem. Phys. 129, 144106(9) (2008)

    Google Scholar 

  120. Eliav, E., Vilkas, M.J., Ishikawa, Y., Kaldor, U.: Ionization potentials of alkali atoms: towards meV accuracy. Chem. Phys. 311, 163–168 (2005)

    CAS  Google Scholar 

  121. Landau, A., Eliav, E., Ishikava, Y., Kaldor, U.: Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119). J. Chem. Phys. 115, 2389–2392 (2001)

    CAS  Google Scholar 

  122. Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies of ytterbium, lutetium, lawrencium by relativistic coupled-cluster method. Phys. Rev. A 52, 291–291 (1995)

    CAS  Google Scholar 

  123. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Prediction of atomic properties of element 115 and its adsorption on inert surfaces. GSI Annual Report 2010, GSI Report 2011, p. 207

    Google Scholar 

  124. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Benchmark calculations of atomic properties of elements 113–122. Presentation at the TAN2011 Conference, Sochi, 5–11 Sept 2011. (http://tan11.jinr.ru/Final_Programme-TAN11.htm)

    Google Scholar 

  125. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio predictions of atomic properties of element 120, with comparison to lighter homologs, Phys. Rev. A, 87, 022502-1-8 (2013)

    Google Scholar 

  126. Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Atomic properties of element 113 and its adsorption on inert surfaces from ab initio Dirac-Coulomb calculations. J. Phys. Chem. A 112, 13712–13716 (2008)

    CAS  Google Scholar 

  127. Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations. J. Chem. Phys. 128, 024707(9) (2008)

    Google Scholar 

  128. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Electron affinity of element 114, with comparison to Sn and Pb. Chem. Phys. Lett. 480, 49–51 (2009)

    CAS  Google Scholar 

  129. Eliav, E.: Private communication (2011)

    Google Scholar 

  130. Pershina, V.: Unpublished

    Google Scholar 

  131. Lim, I.S., Pernpointer, M., Laerdahl, J.K., Schwerdtfeger, P., Neogrady, P., Urban, M.: Relativistic coupled-cluster static dipole polarizabilities of the alkali metals from Li to element 119. Phys. Rev. A. 60, 2822–2828 (1999)

    Google Scholar 

  132. Lim, I.S., Schwerdtfeger, P., Metz, B., Stol, H.: All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119. J. Chem. Phys. 122, 104103(12) (2005)

    Google Scholar 

  133. Thierfelder, C., Assadollahzadeh, B., Schwerdtfeger, P., Schäfer, S.: Relativistic and electron correlation effects in static dipole polarizabilities for the group-14 elements from carbon to element Z = 114: theory and experiment. Phys. Rev. A. 78, 052506(7) (2008)

    Google Scholar 

  134. Umemoto, K., Saito, S.: Electronic configuration of superheavy elements. J. Phys. Soc. Jap. 65, 3175–3179 (1996)

    Google Scholar 

  135. Yu, Y.J., Li, J.G., Dong, C.Z., Ding, X.B., Fritsche, S., Fricke, B.: The excitation energies, ionization potentials and oscillator strengths of neutral and ionized species of Uub (Z = 112) and the homologue elements Zn, Cd and Hg. Eur. Phys. J. D 44, 51–56 (2007)

    CAS  Google Scholar 

  136. Yu, Y.J., Dong, C.Z., Li, J.G., Fricke, B.: The excitation energies, ionization potentials, and oscillator strengths of neutral and ionized species of Uuq (Z = 114) and the homolog elements Ge, Sn, and Pb. J. Chem. Phys. 128, 124316(7) (2008)

    Google Scholar 

  137. Chang, Z., Li., J., Dong, C.: Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine. J. Phys. Chem. A 114, 13388–13394 (2010)

    Google Scholar 

  138. Dzuba, V.A., Flambaum, V.V., Silvestrov, P.G., Sushkov, O.P.: Many-body perturbation-theory calculations in atoms with open shells. Phys. Rev. A 44, 2828–2831 (1991)

    CAS  Google Scholar 

  139. Nash, C.S.: Atomic and molecular properties of elements 112, 114 and 118. J. Phys. Chem. A 109, 3493–3500 (2005)

    CAS  Google Scholar 

  140. Schwedtfeger, P., Seth, M.: Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study. J. Nucl. Radiochem. Sci. 3, 133–136 (2002)

    Google Scholar 

  141. Moore, C.E.: Atomic energy levels. Natl. Stand. Ref. Data Ser., Natl. Bur. Stand.: Washington, 1971

    Google Scholar 

  142. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics, 93rd edn. CRC Press, Boca Raton (2012)

    Google Scholar 

  143. Pershina, V., Borschevsky, A., Anton, J.: Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces. J. Chem. Phys., 136, 134317 (1–10) (2012)

    Google Scholar 

  144. Pershina, V., Borschevsky, A., Anton, J.: Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces. Chem. Phys. 395, 87–94 (2012)

    CAS  Google Scholar 

  145. Pershina, V., Johnson, E., Fricke, B.: Theoretical estimates of redox potentials for group 6 elements, including element 106, seaborgium, in acid solutions. J. Phys. Chem. A 103, 8463–8470 (1999)

    CAS  Google Scholar 

  146. Slater, J.C.: Atomic radii in crystals. J. Chem. Phys. 41, 3199–3204 (1964)

    CAS  Google Scholar 

  147. Bondi, A.: Van der Walls volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    CAS  Google Scholar 

  148. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Google Scholar 

  149. Pyykkö, P., Atsumi, M.: Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009)

    Google Scholar 

  150. Pyykkö, P., Riedel, S., Patzsche, M.: Triple-bond covalent radii. Chem. Eur. J. 11, 3511–3620 (2005)

    Google Scholar 

  151. Seth, M., Dolg, M., Fulde, P., Schwerdtfeger, P.: Lanthanide and actinide contractions: relativistic and shell structure effects. J. Am. Chem. Soc. 117, 6597–6598 (1995)

    CAS  Google Scholar 

  152. Bilewicz, A.: The ionic radii of Rf4+, Db5+ and Sg6+. Radiochim. Acta 88, 833–836 (2000)

    CAS  Google Scholar 

  153. Seth, M., Schwerdtfeger, P., Dolg, M.: The Chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+ (112)F2, and (112)F4. J. Chem. Phys. 106, 3623–3632 (1997)

    CAS  Google Scholar 

  154. Goeben, D., Hohm, U.: Dipole polarizability, Cauchy moments, and related properties of Hg. J. Phys. Chem. 100, 7710–7712 (1996)

    Google Scholar 

  155. Pershina, V., Bastug, T.: Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem. Phys. 311, 139–150 (2000)

    Google Scholar 

  156. Pyykkö, P., Desclaux, J.P.: Dirac-Fock one-center calculations. The model systems TiH4, ZrH4, HfH4, and (104)H4. Chem. Phys. Lett. 50, 503–507 (1977)

    Google Scholar 

  157. Pyykkö, P., Desclaux, J.P.: Dirac-Fock one-center calculations show (114)H4 to resemble PbH4. Nature 226, 336–337 (1977)

    Google Scholar 

  158. Pyykkö, P., Desclaux, J.P.: Dirac-Fock one-center calculations. VI. The tetrahedral and octahedral model systems CeH4, ThH4, CrH6, MoH6, WH6, UH6 and (106)H6. Chem. Phys. 34, 261–280 (1978)

    Google Scholar 

  159. Varga, S., Fricke, B., Hirata, M., Bastug, T., Pershina, V., Fritzsche, S.: Total energy calculations of RfCl4 and homologues in the framework of relativistic Density Functional Theory. J. Phys. Chem. A 104, 6495–6498 (2000)

    CAS  Google Scholar 

  160. Pershina, V., Sepp, W.-D., Fricke, B., Rosen, A.: Relativistic effects in physics and chemistry of element 105. I. Periodicities in properties of group 5 elements. Electronic structure of the pentachlorides. J. Chem. Phys. 96, 8367–8378 (1992)

    CAS  Google Scholar 

  161. Pershina, V., Fricke, B.: Relativistic effects in physics and chemistry of element 105. IV. Their influence on the electronic structure and related properties. J. Chem. Phys. 99, 9720–9729 (1993)

    CAS  Google Scholar 

  162. Pershina, V., Sepp, W.-D., Fricke, B., Kolb, D., Schädel, M., Ionova, G.V.: Relativistic effects in physics and chemistry of element 105. II. Electronic structure and properties of group 5 elements bromides. J. Chem. Phys. 97, 1116–1122 (1992)

    CAS  Google Scholar 

  163. Pershina, V., Sepp, W.-D., Bastug, T., Fricke, B., Ionova, G.V.: Relativistic effects in physics and chemistry of element 105. III. Electronic structure of hahnium oxyhalides as analogs of group 5 elements oxyhalides. J. Chem. Phys. 97, 1123–1131 (1992)

    CAS  Google Scholar 

  164. Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta and element 105, Db. J. Chem. Phys. 136, 034308(7) (2012)

    Google Scholar 

  165. Pershina, V., Fricke, B.: Electronic structure and properties of the group 4, 5, and 6 highest chlorides including elements 104, 105, and 106. J. Phys. Chem. 98, 6468–6473 (1994)

    CAS  Google Scholar 

  166. Pershina, V., Fricke, B.: Group 6 oxychlorides MOCl4, where M = Mo, W, and element 106 (Sg): electronic structure and thermochemical stability. J. Phys. Chem. 99, 144–150 (1995)

    CAS  Google Scholar 

  167. Pershina, V., Fricke, B.: Group 6 dioxydichlorides MO2Cl2 (M = Cr, Mo, W, and element 106, Sg): The electronic structure and thermochemical stability. J. Phys. Chem. 100, 8748–8751 (1996)

    CAS  Google Scholar 

  168. Pershina, V., Bastug, T.: The electronic structure and properties of group 7 oxychlorides, MO3Cl, where M = Tc, Re, and element 107. Bh. J. Chem. Phys. 113, 1441–1446 (2000)

    CAS  Google Scholar 

  169. Pershina, V., Bastug, T., Fricke, B.: Relativistic effects on the electronic structure and volatility of group-8 tetroxides MO4, where M = Ru, Os and element 108, Hs. J. Chem. Phys. 122, 124301(9) (2005)

    Google Scholar 

  170. Pershina, V., Anton, J., Jacob, T.: Fully-relativistic DFT calculations of the electronic structures of MO4 (M = Ru, Os, and element 108, Hs) and prediction of physisorption. Phys. Rev. A 78, 032518(5) (2008)

    Google Scholar 

  171. Han, Y.-K., Son, S.-K., Choi, Y.J., Lee, Y.S.: Structures and stabilities for halides and oxides of transactinide elements Rf, Db, and Sg calculated by relativistic effective core potential methods. J. Phys. Chem. 103, 9109–9115 (1999)

    CAS  Google Scholar 

  172. Malli, G.L., Styszynski, J.: Ab initio all-electron fully relativistic Dirac-Fock-Breit calculations for molecules of the superheavy transactinide elements: rutherfordium tetrachloride. J. Chem. Phys. 109, 4448–4455 (1998)

    CAS  Google Scholar 

  173. Malli, G.: Dramatic relativistic effects in atomization energy and volatility of the superheavy hassium tetroxide and OsO4. J. Chem. Phys. 117, 10441–10443 (2002)

    CAS  Google Scholar 

  174. Filatov, M., Cremer, D.: Calculation of electronic properties using regular approximation to relativistic effects: the polarizabilities of RuO4, OsO4, and HsO4 (Z = 108). J. Chem. Phys. 119, 1412–2012 (2003)

    CAS  Google Scholar 

  175. Dolg, M., Wedig, U., Stoll, H., Preuss, H.: Energy adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872 (1987)

    Google Scholar 

  176. Andrae, D., Häussermann, U., Dolg, M., Stoll, H., Preuss, H.: Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 77, 123–141 (1990)

    Google Scholar 

  177. Nash, C.S., Bursten, B.E.: Comparisons among transition metal, actinide and transactinide complexes: the relativistic electronic structures of Cr(CO)6, W(CO)6, U(CO)6 and Sg(CO)6. New J. Chem. 19, 669–675 (1995)

    CAS  Google Scholar 

  178. Zvara, I.: The Inorganic Radiochemistry of Heavy Elements. Springer, Dordrecht (2008)

    Google Scholar 

  179. Eichler, B., Zvara, I.: Evaluation of the enthalpy of adsorption from thermodynamic data. Radiochim. Acta 30, 233–238 (1982)

    CAS  Google Scholar 

  180. Zvara, I.: Simulation of thermochromatography process by the Monte Carlo method. Radiochim. Acta 38, 95–101 (1985)

    CAS  Google Scholar 

  181. Zvara, I.: Problems in thermochromatographic separations of radioelements. J. Radioanal. Nucl. Chem. 204, 123–134 (1996)

    CAS  Google Scholar 

  182. Düllmann, Ch., Brüchle, W., Dressler, R., Eberhardt, K., Eichler, B., Eichler, R., Gäggeler, H.W., Ginter, T.N., Glaus, F., Gregorich, K.E., Hoffman, D.C., Jäger, E., Jost, D.T., Kirbach, U.W., Lee, D.E., Nitsche, H., Patin, J.B., Pershina, V., Piguet, D., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schött, H.-J., Soverna, S., Sudowe, R., Thörle, P., Timokhin, S.N., Trautmann, N., Türler, A., Vahle, A., Wirth, G., Yakushev, A.B., Zielinski, P.M.: Chemical investigation of hassium (element 108). Nature 418, 859–862 (2002)

    Google Scholar 

  183. Pershina, V.: Predictions of adsorption behaviour of the heaviest elements in a comparative study from the electronic structure calculations. Radiochim. Acta 93, 125–131 (2005)

    CAS  Google Scholar 

  184. Eichler, R., Brüchle, W., Dressler, R., Düllman, Ch.E., Eichler, B., Gäggeler, H.W., Gregorich, K.E., Hoffman, D.C., Hübener, S., Jost, D.T., Kirbach, U.W., Laue, C.A., Lavanchy, V.M., Nitsche, H., Patin, J.B., Piguet, D., Schädel, M., Shaughnessy, D.A., Strellis, D.A., Taut, S., Tobler, L., Tsyganov, Y.S., Türler, A., Vahle, A., Wilk, P.A., Yakushev, A.B.: Chemical characterization of bohrium (element 107). Nature 407, 63–65 (2000)

    CAS  Google Scholar 

  185. Schädel, M., Brüchle, W., Dressler, R., Eichler, B., Gäggeler, H.W., Günther, R., Gregorich, K.E., Hoffman, D.C., Hübener, S., Jost, D.T., Kratz, J.V., Paulus, W., Schumann, D., Timokhin, S., Trautmann, N., Türler, A., Wirth, G., Yakushev, A.B.: Chemical properties of element 106 (seaborgium). Nature, 388, 55–57 (1997)

    Google Scholar 

  186. Türler, A., Brüchle, W., Dressler, R., Eichler, B., Eichler, R., Gäggeler, H.W., Gärtner, M., Glatz, J.-P., Gregorich, K.E., Hübener, S., Jost, D.T., Lebedev, V.Y., Pershina, V., Schädel, M., Taut, S., Timokhin, N., Trautmann, N., Vahle, A., Yakushev, A.B.: First measurements of a thermochemical property of a seaborgium compound. Angew. Chem. Int. Ed. 38, 2212–2213 (1999)

    Google Scholar 

  187. Zvara, I., Belov, V., Domanov, V.P., Shalaevski, M.R.: Sov. Radiochem. 18, 371 (1976)

    CAS  Google Scholar 

  188. Gäggeler, H.W., Jost, D.T., Kovacs, J., Scherer, U.W., Weber, A., Vermeulen, D., Türler, A., Gregorich, K.E., Czerwinski, R.A., Kadkhodayan, B., Lee, D.M., Nurmia, M., Hoffman, D.C., Kratz, J.V., Gober, M.K., Zimmermann, H.P., Schädel, M., Brüchle, W., Schimpf, E., Zvara, I.: Gas phase chromatography experiments with bromides of tantalum and element 105. Radiochim. Acta 57, 93–100 (1992)

    Google Scholar 

  189. Türler, A., Eichler, B., Jost, D.T., Piguet, D., Gäggeler, H.W., Gregorich, K.E., Kadkhodayan, B., Kreek, S.A., Lee, D.M., Mohar, M., Sylwester, E., Hoffman, D.C., Hübener, S.: On-line gas phase chromatography with chlorides of niobium and hahnium (element 105). Radiochim. Acta 73, 55–66 (1996)

    Google Scholar 

  190. Qin, Z., Lin, M.S., Fan, F.L., Huang, W.X., Yan, X.L., Bai, J., Wu, X.L., Lei, F.A., Ding, H.J., Ma, F., Li, G.S., Zhou, H.B., Guo, J.S.: On-line gas chromatographic studies of Nb, Ta, and Db bromides. Radiochim. Acta 100, 285–290 (2012)

    CAS  Google Scholar 

  191. Gyanchandani, J., Sikka, S.K.: Structural properties of rutherfordium. An ab initio study. Phys. Lett. A 376, 620–625 (2012)

    CAS  Google Scholar 

  192. Rosen, A., Fricke, B., Morovic, T., Ellis, D.E.: J. Phys. C-4, Suppl. 4, 40, C-4/218 (1979)

    Google Scholar 

  193. Patzschke, M., Pyykkö, P.: Darmstadtium carbonyl and carbide resemble platinum carbonyl and carbide. The Royal. Soc. Chem., Chem. Commun. 1982–1983 (2004)

    Google Scholar 

  194. Seth, M., Schwerdtfeger, P., Dolg, M., Faegri, K., Hess, B.A., Kaldor, U.: Large relativistic effects in molecular properties of the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461–465 (1996)

    CAS  Google Scholar 

  195. Dolg, M., Stoll, H., Seth, M., Schwerdtfeger, P.: On the performance of energy-consistent spin-orbit pseudopotentials: (111)H revised. Chem. Phys. Lett. 345, 490–496 (2001)

    CAS  Google Scholar 

  196. Han, Y.-K., Hirao, K.: Two-component coupled-cluster calculations for the hydride of element 111: on the performance of relativistic effective core potentials. Chem. Phys. Lett. 328, 453–458 (2000)

    CAS  Google Scholar 

  197. Seth, M., Schwerdtfeger, P.: A comparison of relativistic and electron correlation effects for (111)F, (111)H and (111)Li. Chem. Phys. Lett. 318, 314–318 (2000)

    CAS  Google Scholar 

  198. Anton, J., Fricke, B., Schwerdtfeger, P.: Non-collinear and collinear four-component relativistic molecular density functional calculations. Chem. Phys. 311, 97–103 (2005)

    CAS  Google Scholar 

  199. Seth, M., Cooke, F., Schwerdtfeger, P., Heully, J.-L., Pelissier, M.: The chemistry of the superheavy elements. II. The stability of high oxidation states in group 11 elements: Relativistic coupled cluster calculations for the di-, tetra- and hexafluoro metallates of Cu, Ag, Au, and element 111. J. Chem. Phys. 109, 3935–3943 (1998)

    CAS  Google Scholar 

  200. Pitzer, K.S.: Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032–1033 (1975)

    CAS  Google Scholar 

  201. Yakushev, A.B., Zvara, I., Oganessian, Y.T., Belozerov, A.V., Dmitriev, S.N., Eichler, B., Hübener, S., Sokol, E.A., Türler, A., Yeremin, A.V., Buklanov, G.V., Chelnokov, M.L., Chepigin, V.I., Gorshkov, V.A., Gulyaev, A.V., Lebedev, V.Y., Malyshev, O.N., Popeko, A.G., Soverna, S., Szeglowski, Z., Timokhin, S.N., Tretyakova, S.P., Vasko V.M., Itkis, M.G.: Chemical identification and properties of element 112. Radiochim. Acta 91, 433–439 (2003)

    Google Scholar 

  202. Eichler, R., Aksenov, N.V., Belozerov, A.V., Bozhikov, G. A., Chepigin, V.I., Dmitriev, S.N., Dressler, R., Gäggeler, H.W., Gorshkov, V.A., Haenssler, F., Itkis, M.G., Laube, A., Lebedev, V.Y., Malyshev, O.N., Oganessian, Y.T., Petrushkin, O.V., Piguet, D., Rasmussen, P., Shishkin, S.V., Shutov, S.V., Svirikhin, A.I., Tereshatov, E.E., Vostokin, G.K., Wegrzecki, M., Yeremin, A.V.: Chemical characterization of element 112. Nature 447, 72–75 (2007)

    Google Scholar 

  203. Eichler, R., Aksenov, N.V., Belozerov, A.V., Bozhikov, G.A., Chepigin, V.I., Dmitriev, S.N., Dressler, R., Gäggeler, H.W., Gorshkov, A.V., Itkis, M.G., Haenssler, F., Laube, A., Lebedev, V.Y., Malyshev, O.N., Oganessian, Y.T., Petrushkin, O.V., Piguet, D., Popeko, A.G., Rasmussen, P., Shishkin, S.V., Serov, A.A., Shutov, A.V., Svirikhin, A.I., Tereshatov, E.E., Vostokin, G.K., Wegrzecki, M., Yeremin, A.V.: Thermochemical and physical properties of element 112. Angew. Chem. Int Ed. 47, 3262–3266 (2008)

    Google Scholar 

  204. Liu, W., Dolg, M., Schwerdtfeger, P.: Benchmark relativistic all-electron density functional and ab initio pseudopotential study of group12 dimers M2 (M = Zn, Cd, Hg and eka-Hg). Unpublished

    Google Scholar 

  205. Zee, R.D., Blankespoor, S.C., Zweier, T.S.: Direct spectroscopic determination of the Hg2 bond length and an analysis of the 2540 Å band. J. Chem. Phys. 88, 4650–4654 (1988)

    Google Scholar 

  206. Gaston, N., Opahle, I., Gäggeler, H.W., Schwerdtfeger, P.: Is Eka-Mercury (element 112) a group 12 metal? Angew. Chem. Int. Ed. 46, 1663–1666 (2007)

    CAS  Google Scholar 

  207. Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z = 114 (Voraussage). Kernenergie 19, 307–311 (1976)

    Google Scholar 

  208. Soverna, S.: Doctoral Thesis, Universität Bern (2004)

    Google Scholar 

  209. Soverna, S., Dressler, R., Düllmann, C.E., Eichler, B., Eichler, R., Gäggeler, H.W., Haenssler, F., Niklaus, J.P., Piguet, D., Qin, Z., Türler, A., Yakushev, A.: Thermochromatographic studies of mercury and radon on transition metal surfaces. Radiochim. Acta 93, 1–8 (2005)

    Google Scholar 

  210. Pershina, V., Bastug, T., Fricke, B., Jacob, T., Varga, S.: Intermetallic compounds of the heaviest elements: the electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem. Phys. Lett. 365, 176–183 (2002)

    CAS  Google Scholar 

  211. Pershina, V., Bastug, T., Sarpe-Tudoran, C., Anton, J., Fricke, B.: Predictions of adsorption behaviour of the superheavy element 112. Nucl. Phys. A 734, 200–213 (2004)

    Google Scholar 

  212. Sarpe-Tudoran, C., Fricke, B., Anton, J., Pershina, V.: Adsorption of superheavy elements on metal surfaces. J. Chem. Phys. 126, 174702(5) (2007)

    Google Scholar 

  213. Pershina, V., Anton, J., Jacob, T.: Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb. J. Chem. Phys. 131, 084713(8) (2009)

    Google Scholar 

  214. Rykova, E.A., Zeitsevskii, A., Mosyagin, N.S., Isaev, T.A., Titov, A.V.: Relativistic effective core potential calculations of Hg and eka-Hg (E112) interactions with gold: spin-orbit density functional theory modelling of Hg-Au n and E112-Au n systems. J. Chem. Phys. 125, 241102(3) (2006)

    Google Scholar 

  215. Zaitsevskii, A., Rykova, E.A., Mosyagin, N.S., Titov, A.V.: Towards relativistic ECP/DFT description of chemical bonding in E112 compounds: spin-orbit and correlation effects in E112X versus HgX (X = H, Au). Cent. Eur. J. Phys. 4, 448–460 (2006)

    CAS  Google Scholar 

  216. Zaitsevkii, A., Titov, A.: Relativistic pseudopotential model for superheavy elements: applications to chemistry of eka-Hg and eka-Pb. Russ. Chem. Rev. 78, 1173–1181 (2009)

    Google Scholar 

  217. Zaitsevski, A., van Wüllen, C., Rykova, E.A.: Two-component relativistic density functional modeling of the adsorption of element 114 (eka-led) on gold. Phys. Chem. Chem. Phys. 12, 4152–4156 (2010)

    Google Scholar 

  218. Mosyagin, N.S., Isaev, T.A., Titov, A.V.: Is E112 a relatively inert element? Benchmark relativistic correlation study of spectroscopic constants in E112H and its cation. J. Chem. Phys. 124, 224302–(1–5) (2006)

    Google Scholar 

  219. Nakajima, T., Hirao, K.: Numerical illustration of third-order Douglas-Kroll method: Atomic and molecular properties of superheavy element 112. Chem. Phys. Lett. 329, 511–516 (2000)

    CAS  Google Scholar 

  220. Kaupp, M., von Schering, H.G.: Gaseous mercury(IV) fluoride, HgF4: An ab initio study. Angew. Chem., Int. Ed. Engl., 32, 861–863 (1993)

    Google Scholar 

  221. Kaupp, M., Dolg, M., Stoll, H., von Schnering, H.G.: Oxidation state +IV in group 12 chemistry: ab initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides. Inorg. Chem., 33, 2122–2131 (1994)

    Google Scholar 

  222. Eichler, R., Aksenov, N.V., Albin, Y.V., Belozerov, A.V., Bozhikov, G.A., Chepigin, V.I., Dmitriev, S.N., Dressler, R., Gäggeler, H.W., Gorshkov, V.A., Henderson, R.A., Johnsen, A.M., Kenneally, J.M., Lebedev, V.Y., Malyshev, O.N., Moody, K.J., Oganessian, Y.T., Petrushkin, O.V., Piguet, D., Popeko, A.G., Rasmussen, P., Serov, A., Shaughnessy, D.A., Shishkin, S.V., Shutov, A.V., Stoyer, M.A., Stoyer, N.J., Svirikhin, A.I., Tereshatov, E.E., Vostokin, G.K., Wegrzecki, M., Wilk, P.A., Wittwer, D., Yeremin, A.V.: Indication for a volatile element 114. Radiochim. Acta, 88, 133–139 (2010)

    Google Scholar 

  223. Yakushev, A.: Private communication 2011

    Google Scholar 

  224. König, S., Gäggeler, H.W., Eichler, R., Haenssler, F., Soverna, S., Dressler, R., Friedrich, S., Piguet, D., Tobler, L.: The production of long-lived Thallium-isotopes and their thermochromatography studies on quartz and gold. PSI Annual report, 2006, Jan 2005, p. 5

    Google Scholar 

  225. Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of homonuclear dimers and volatility of the 7p elements. J. Chem. Phys. 132, 194341(11) (2010)

    Google Scholar 

  226. Pershina, V., Anton, J., Fricke, B.: Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM´, where M = Ge, Sn, Pb, and element 114, and M´ = Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114. J. Chem. Phys. 127, 134310(9) (2007)

    Google Scholar 

  227. Wood, C.P., Pyper, N.C.: An ab initio relativistic calculation for (E113)2. Chem. Phys. Lett. 84, 614–621 (1981)

    CAS  Google Scholar 

  228. Liu, W., van Wüllen, Ch., Han, Y.K., Choi, Y.J., Lee, Y.S.: Spectroscopic constants of Pb and eka-lead compounds: comparsion of different approaches. Adv. Quant. Chem. 39, 325–355 (2001)

    CAS  Google Scholar 

  229. van Wüllen, C.: Relativistic density functional calculations on small molecules. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part II, pp. 598–655. Elsevier, Amsterdam (2002)

    Google Scholar 

  230. Liu, W., van Wüllen, C., Wang, F., Li, L.: Spectroscopic constants of MH and M2 (M = Tl, E113, Bi, E115): Direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory. J. Chem. Phys. 116, 3626–3634 (2002)

    CAS  Google Scholar 

  231. Liu, W., Peng, D.: Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J. Chem. Phys. 125, 044102(1–10) (2006)

    Google Scholar 

  232. Peng, D., Liu, W., Xiao, Y., Cheng, L.: Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”. J. Chem. Phys. 127, 104106(15) (2007)

    Google Scholar 

  233. Kullie, O., Saue, T.: Range-separated density-functional theory: a 4-component relativistic study of the rare gas dimers He2, Ne2, Ar2, Kr2, Xe2, Rn2 and Uuo2. Chem. Phys. 395, 54–62 (2012)

    CAS  Google Scholar 

  234. Pitzer, K.S., Balasubramanian, K.: Properties of ten electronic states of diatomic lead from relativistic quantum calculations. J. Phys. Chem. 86, 3068–3070 (1982)

    CAS  Google Scholar 

  235. Heaven, M.C., Miller, T.A., Bondybey, V.E.: Laser spectroscopy of lead molecules produced by laser vaporization. J. Phys. Chem. 87, 2071–2075 (1983)

    Google Scholar 

  236. Hermann, A., Furthmüller, J., Gäggeler, H.W., Schwerdtfeger, P.: Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116(8) (2010)

    Google Scholar 

  237. Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. J. Chem. Phys. 133, 104304(10) (2010)

    Google Scholar 

  238. Rossbach, H., Eichler, B.: Adsorption von Metallen auf metallische Oberflächen und Möglichkeiten ihrer Nutzung in der Kernchemie, B, pp. 1–20. Akademie der Wissenschaft der DDR, Report No. ZFK-527 (1984)

    Google Scholar 

  239. Eichler, B., Kratz, J.V.: Electrochemical deposition of carrier-free radionuclides. Radiochim. Acta 88, 475–482 (2000)

    CAS  Google Scholar 

  240. Pershina, V., Anton, J., Jacob, T.: Electronic structures and properties of MAu and MOH, where M = Tl and element 113. Chem. Phys. Lett. 480, 157–160 (2009)

    CAS  Google Scholar 

  241. Fox-Beyer, B.S., van Wüllen, C.: Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials. Chem. Phys. 395, 95–103 (2012)

    CAS  Google Scholar 

  242. Haenssler, F., Eichler, R., Gäggeler, H.W., Soverna, S., Dressler, R., Piguet, D., Schippering, M.: Thermochromatographic studies of 212Pb on metal surfaces. PSI Annual Report 2005 (2006), p. 3; Eichler, R.: private communication

    Google Scholar 

  243. Saue, T., Faegri, K., Gropen, O.: Relativistic effects on the bonding of heavy and superheavy hydrogen halides. Chem. Phys. Lett. 263, 360–366 (1996)

    CAS  Google Scholar 

  244. Seth, M., Schwerdtfeger, P., Faegri, K.: The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds. J. Chem. Phys. 111, 6422–6433 (1999)

    CAS  Google Scholar 

  245. Thierfelder, C., Schwerdtfeger, P., Kroes, A., Borschevsky, A., Fricke, B. Scalar relativistic and spin-orbit effects in closed-shell superheavy-element monohydrides. Phys. Rev. A 80, 022501-1-10 (2009)

    Google Scholar 

  246. Han, Y.-K., Bae, C., Lee, Y.S.: Two-component calculations for the molecules containing superheavy elements: spin-orbit effects for (117)H, (113)H, and (113)F. J. Chem. Phys. 110, 8969–8975 (1999)

    Google Scholar 

  247. Han, Y.-K., Bae, C., Son, S.-K., Lee, Y.S.: Spin–orbit effects on the transactinide p-block element monohydrides MH (M = element 113–118). J. Chem. Phys. 112, 2684–2691 (2000)

    Google Scholar 

  248. Choi, Y.J., Han, Y.K., Lee, Y.S.: The convergence of spin–orbit configuration interaction calculations for TlH and 113H. J. Chem. Phys. 115, 3448–3453 (2001)

    Google Scholar 

  249. Nash, C.S., Bursten, B.E.: Spin-orbit, VSEPR theory, and the electronic structure of heavy and superheavy group IVA hydrides and group VIIIA tetrafluorides. A partial role reversal for elements 114 and 118. J. Phys. Chem. A 103, 402–410 (1999)

    CAS  Google Scholar 

  250. Balasubramanian, K.: Electronic states of the superheavy element 113 and (113)H. Chem. Phys. Lett. 361, 397–404 (2002)

    Google Scholar 

  251. Vest, B., Klinkhammer, K., Thierfelder, C., Lein, M., Schwerdtfeger, P.: Kinetic and thermodynamic stability of the group 13 trihydrides. Inorg. Chem. 48, 7953–7961 (2009)

    Google Scholar 

  252. Balasubramanian, K.: Breakdown of the singlet and triplet nature of electronic states of the superheavy element 114 dihydride (114H2). J. Chem. Phys. 117, 7426–7432 (2002)

    CAS  Google Scholar 

  253. Nash, C.S., Crockett, W.W.: An anomalous bond angle in (116)H2. Theoretical evidence for supervalent hybridization. J. Phys. Chem. A 110, 4619–4621 (2006)

    CAS  Google Scholar 

  254. Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17: a study of relativistic effects on bonding. J. Chem. Phys. 115, 2456–2464 (2001)

    CAS  Google Scholar 

  255. Schwerdtfeger, P.: Second-order Jahn—Teller distortions in group 17 fluorides EF3 (E = Cl, Br, I, and At). Large relativistic bond angle changes in AtF3. J. Phys. Chem. 100, 2968–2973 (1996)

    CAS  Google Scholar 

  256. Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state +4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493–2496 (1998)

    CAS  Google Scholar 

  257. Grant, I.P., Pyper, N.C.: Theoretical chemistry of superheavy elements E116 and E114. Nature 265, 715–717 (1977)

    CAS  Google Scholar 

  258. van Wüllen, C., Langermann, N.: Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. J. Chem. Phys. 126, 114106(9) (2007)

    Google Scholar 

  259. Bae, C., Han, Y.-K., Lee, Y.S.: Spin–orbit and relativistic effects on structures and stabilities of group 17 fluorides EF3 (E = I, At, and element 117): relativity induced stability for the D 3h structure of (117)F3. J. Phys. Chem. A 107, 852–858 (2003)

    CAS  Google Scholar 

  260. Malli, G.L.: Relativistic and electron correlation effects in molecules of heavy elements. In: Malli, G. (ed.) Relativistic and Electron Correlation Effects in Molecules and Solids, NATO ASI Series, vol. 318, pp. 1–15. Plenum, New York (1994)

    Google Scholar 

  261. Pitzer, K.S.: Fluorides of radon and element 118. J. Chem. Soc., Chem. Commun. 760–761 (1975)

    Google Scholar 

  262. Han, Y.K., Lee, Y.S.: Structure of RgF4 (Rg = Xe, Rn, and element 118. n = 2,4) calculated by two-component spin-orbit methods. A spin-orbit inducted isomer of (118)F4. J. Phys. Chem. A 103, 1104–1108 (1999)

    CAS  Google Scholar 

  263. Nash, C.S., Bursten, B.E.: Spin-orbit coupling versus the VSEPR method: On the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew. Chem. Int. Ed. 38, 151–153 (1999)

    CAS  Google Scholar 

  264. Bonchev, D., Kamenska, V.: Predicting the properties of the 113–120 transactinide elements. J. Phys. Chem. 85, 1177–1186 (1981)

    CAS  Google Scholar 

  265. Schwerdtfeger, P.: Relativistic effects in molecular structure of s- and p-block elements. In: Domenicano, A., Hargittai, I. (eds.) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals, NATO Science Series, pp. 169–190. Kluwer, Dordrecht (2002)

    Google Scholar 

  266. Miranda, P.S., Mendes, A.P.S., Gomes, J.S., Alves, C. N., de Souza, A.R., Sambrano, J.R., Gargano, R., de Macedo, L.G.M.: Ab initio correlated all electron Dirac-Fock calculations for eka-francium fluoride (E119F). J. Braz. Chem. Soc., 23, 1104–1113 (2012)

    Google Scholar 

  267. Pyykkö, P.: The physics behind chemistry and the periodic table. Chem. Rev. 112, 371–284 (2012)

    Google Scholar 

  268. Pyykkö, P.: Predicting new, simple inorganic species by quantum-chemical calculations: some successes. Phys. Chem. Chem. Phys. 14, 14734--14742 (2012)

    Google Scholar 

  269. Makhyoun, M.A.: On the electronic structure of 5g1 complexes of element 125: A quasi-relativistic MS-Xα study. J. Chim. Phys. 85, 917–924 (1988)

    CAS  Google Scholar 

  270. Malli, G.L.: Dissociation energy of ekaplutonium fluoride E126F: The first diatomic with molecular spinors consisting of g atomic spinors. J. Chem. Phys. 124, 071102(2) (2006)

    Google Scholar 

  271. Malli, G.L.: Thirty years of relativistic self-consistent field theory for molecules: Relativistic and electron correlation effects for atomic and molecular systems of transactinide superheavy elements up to ekaplutonium E126 with g-atomic spinors in the ground state configuration. Theor. Chem. Acc. 118, 473–482 (2007)

    Google Scholar 

  272. Kadkhodayan, B., Türler, A., Gregorich, K.E., Baisden, P.A., Czerwinski, K.R., Eichler, B., Gäggeler, H.W., Hamilton, T.M., Jost, T.M., Kacher, C.D., Kovacs, A., Kreek, S.A., Lane, M.R., Mohar, M.F., Neu, M.P., Stoyer, N.J., Sylwester, E.R., Lee, D.M., Nurmia, M.J., Seaborg, G.T., Hoffman, D.C.: On-line chromatographic studies of chlorides of Rutherfordium and homologs Zr and Hf. Radiochim. Acta 72, 169–178 (1996)

    Google Scholar 

  273. Türler, A.: Gas phase chemistrty experiments with transactinide elements. Radiochim. Acta 72, 7–17 (1996)

    Google Scholar 

  274. Ionova, G.V., Pershina, V., Johnson, E., Fricke, B., Schädel, M.: Redox reactions for group 5 elements, including element 105, in aqueous solutions. J. Phys. Chem. 96, 11096–11101 (1992)

    CAS  Google Scholar 

  275. Johnson, E., Fricke, B.: Prediction of some thermodynamic properties of selected compounds of element 104. J. Phys. Chem. 95, 7082–7084 (1991)

    CAS  Google Scholar 

  276. Bratsch, S.G.: Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989)

    CAS  Google Scholar 

  277. Bratsch, S.G., Lagowski, J.J.: Actinide thermodynamic predictions. 3. Thermodynamics of compounds and aqua-ions of the 2+, 3+, and 4+ oxidation states and standard electrode potentials at 298.15 K. J. Phys. Chem. 90, 307–312 (1986)

    CAS  Google Scholar 

  278. Ahrland, S., Liljenzin, J.O., Rydberg, J.: Solution chemistry. In: Bailar, J. (ed.) Comprehensive Inorganic Chemistry, vol. 5, pp. 519–542. Pergamon Press, Oxford (1973)

    Google Scholar 

  279. Baes Jr, C.F., Mesmer, R.E.: The Hydrolysis of Cations. John Wiley, New York (1976)

    Google Scholar 

  280. Kassiakoff, A., Harker, D.: The calculations of the ionization constants of inorganic oxygen acids from their structures. J. Am. Chem. Soc. 60, 2047–2055 (1938)

    Google Scholar 

  281. Pershina, V.: Solution chemistry of element 105. Part I: Hydrolysis of group 5 cations: Nb, Ta, Ha and Pa. Radiochim. Acta 80, 65–74 (1998)

    CAS  Google Scholar 

  282. Pershina, V.: Solution chemistry of element 105. Part II: Hydrolysis and complex formation of Nb, Ta, Ha and Pa in HCl solutions. Radiochim. Acta 80, 75–84 (1998)

    CAS  Google Scholar 

  283. Pershina, V., Bastug, T.: Solution chemistry of element 105. Part III: Hydrolysis and complex formation of Nb, Ta, Db and Pa in HF and HBr solutions. Radiochim. Acta 84, 79–84 (1999)

    CAS  Google Scholar 

  284. Pershina, V., Kratz, J.V.: Solution chemistry of element 106: theoretical predictions of hydrolysis of group 6 cations Mo, W, and Sg. Inorg. Chem. 40, 776–780 (2001)

    CAS  Google Scholar 

  285. Pershina, V., Trubert, D., Le Naour, C., Kratz, J.V.: Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions. Radiochim. Acta 90, 869–877 (2002)

    CAS  Google Scholar 

  286. Pershina, V.: Theoretical treatment of the complexation of element 106, Sg in HF solutions. Radiochim. Acta 92, 455–462 (2004)

    CAS  Google Scholar 

  287. Pershina, V.: Theoretical investigations of the reactivity of MO4 and the electronic structure of Na2[MO4(OH)2], where M = Ru, Os, and Hs (element 108). Radiochim. Acta 93, 373–376 (2005)

    CAS  Google Scholar 

  288. Pershina, V., Polakova, D., Omtvedt, J.P.: Theoretical predictions of complex formation of group-4 elements Zr, Hf, and Rf in H2SO4 solutions. Radiochim. Acta 94, 407–414 (2006)

    CAS  Google Scholar 

  289. Kratz, J.V., Pershina, V.: Experimental and theoretical study of the chemistry of the heaviest elements. In: Hess, B.A. (ed.) Relativistic Effects in Heavy-Element Chemistry and Physics, pp. 219–244. Wiley, West Sussex (2003)

    Google Scholar 

  290. Czerwinski, K.R.: Studies of fundamental properties of rutherfordium (element 104) using organic complexing agents. Doctoral Thesis, LBL Berkeley (1992)

    Google Scholar 

  291. Strub, E., Kratz, J.V., Kronenberg, A., Nähler, A., Thörle, P., Zauner, S., Brüchle, W., Jäger, E., Schädel, M., Schausten. B., Schimpf, E., Zongwei, Li, Kirbach, U., Schumann, D., Jost, D., Türler, A., Asai, M., Nagame, Y., Sakara, M., Tsukada, K., Gäggeler, H.W., Glanz, J.P.: Fluoride complexation of rutherfordium (Rf, element 104). Radiochim. Acta 88, 265–271 (2000)

    Google Scholar 

  292. Ishii, A., Toyoshima, A., Tsukada, K., Asai, M., Toume, H., Nishinaka, I., Nagame, Y., Miyashita, S., Mori, T., Suganuma, H., Haba, H., Sakamaki, M., Goto, M., Kudo, H., Akiyama, K., Oura, Y., Nakahara, H., Tashiro, Y., Shinohara, A., Schädel, M., Brüchle, W., Pershina, V., Kratz, J.V.: Fluoride complexation of element 104, rutherfordium (Rf), investigated by cation-exchange chromatography. Chem. Lett. 37, 288–289 (2008)

    CAS  Google Scholar 

  293. Trubert, D., Le Naour, C., Hussonois, M., Brillard, L., Montroy Gutman, F., Le Du, J.F., Constantinescu, O., Barci, V., Weiss, B., Gasparro, J., Ardisson, G.: In: Abstracts of the 1st Intern. Conf. on Chemistry and Physics of the Transactinides, Seeheim, 26–30 Sept (1999)

    Google Scholar 

  294. Toyoshima, A., Haba, H., Tsukada, K., Asai, M., Akiyama, K., Goto, S., Ishii, Y., Nishinaka, I., Sato, T.K., Nagame, Y., Sato, W., Tani, Y., Hasegawa, H., Matsuo, K., Saika, D., Kitamoto, Y., Shinohara, A., Ito, M., Saito, J., Kudo, H., Yokoyama, A., Sakama, M., Sueki, K., Oura, Y., Nakahara, H., Schädel, M., Brüchle, W., Kratz, J.V.: Hexafluoro complex of rutherfordium in mixed HF/HNO3 solutions. Radiochim. Acta 96, 125–134 (2008)

    CAS  Google Scholar 

  295. Haba, H., Tsukada, K., Asai, M., Goto, S., Toyoshima, A., Nishinaka, I., Akiyama, K., Hirata, M., Ichikawa, S., Nagame, Y., Shoji, Y., Shigekawa, M., Koike, T., Iwasaki, M., Shinohara, A., Kaneko, T., Maruyama, T., Ono, S., Kudo, H., Oura, Y., Sueki, K., Nakahara, H., Sakama, M., Yokoyama, A., Kratz, J.V., Schädel, M., Brüchle, W.: Anion-exchange behavior of Rf in HCl and HNO3 solutions. J. Nucl. Radiochem. Sci. 3, 143–146 (2002)

    Google Scholar 

  296. Günther, R., Paulus, W., Kratz, J.V., Seibert, A., Thörle, P., Zauner, S., Brüchle, W., Jäger, E., Pershina, V., Schädel, M., Schausten, B., Schumann, D., Eichler, B., Gäggeler, H.W., Jost, D.T., Türler, A.: Chromatographic study of rutherfordium (element 104) in the system HCl/Tributylphosphate (TBP). Radiochim. Acta 80, 121–128 (1998)

    Google Scholar 

  297. Haba, H., Tsukada, K., Asai, M., Toyoshima, A., Ishii, Y., Toume, H., Sato, T., Nishinaka, I., Ichikawa, T., Ichikawa, S., Nagame, Y., Sato, W., Matsuo, K., Kitamoto, Y., Tashiro, Y., Shinohara, A., Saito, J., Ito, M., Ikezawa, T., Sakamaki, M., Goto, S., Kudo, H., Kikunaga, H., Arai, M., Kamataki, S., Yokoyama, A., Akiyama, K., Sueki, K., Oura, Y., Schädel, M., Brüchle, W., Kratz, J.V.: Extraction behavior of rutherfordium into tributylphosphate from hydrochloric acid. Radiochim. Acta 95, 1–6 (2007)

    Google Scholar 

  298. Omtvedt, J.P., Polyakova, D., Alstad, J., Bjornstad, T., Düllmann, C.E., Folden III, C.M., Garcia, M.A., Gates, J., Gregorich, K.E., Hoffman, D.C., Nelson, S.L., Nitsche, H., Omtwedt, L., Pershina, V., Samadani, F., Skarnemark, G., Stavsetra, L., Sudove, R., Wilson, R.E., Zheng, L., Zielinski, P.M. Radiochim. Acta, to be submitted

    Google Scholar 

  299. Li, Z.J., Toyoshima, A., Tsukada, K., Nagame, Y.: Ion-exchange behavior of Zr and Hf as homologues of element 104, Rf, in H2SO4 and H2SO4/HClO4 mixed solutions. Radiochim. Acta 98, 7–12 (2010)

    CAS  Google Scholar 

  300. Kratz, J.V., Zimmermann, H.P., Scherer, U.W., Schädel, M., Brüchle, W., Gregorich, K.E., Gannett, C.M., Hall, H.L., Henderson, R.A., Lee, D.M., Leyba, J.D., Nurmia, M., Hoffman, D.C., Gäggeler, H.W., Jost, D., Baltensperger, U., Ya Nai-Qi, Türler, A., Lienert, C.: Chemical properties of element 105 in aqueous solution: Halide complex formation and anion exchange into Triisoctyl amine. Radiochim. Acta 48, 121–133 (1989)

    Google Scholar 

  301. Paulus, W., Kratz, J.V., Strub, E., Zauner, S., Brüchle, W., Pershina, V., Schädel, M., Schausten, B., Adams, J.L., Gregorich, K.E., Hoffman, D.C., Lane, M.R., Laue, C., Lee, D.M., McGrath, C.A., Shaughnessy, D.K., Strellis, D.A., Sylwester, E.R.: Chemical properties of element 105 in aqueous solution: extraction of the fluoride-, chloride-, and bromide complexes of the group-5 elements into an aliphatic amine. Radiochim. Acta 84, 69–77 (1999)

    Google Scholar 

  302. Schädel, M., Brüchle, W., Jäger, E., Schausten, B., Wirth, G., Paulus, W., Günther, R., Eberhardt, K., Kratz, J.V., Seibert, A., Strub, E., Thörle, P., Trautmann, N., Waldek, W., Zauner, S., Schumann, D., Kirbach, U., Kubica, B., Misiak, R., Nagame, Y., Gregorich, K.E.: Aqueous chemistry of seaborgium (Z = 106). Radiochim. Acta 83, 163–165 (1998)

    Google Scholar 

  303. Kronenberg, A.: Entwicklung einer online-Chromatographie für Element 106 (Seaborgium), Doctoral Thesis, University of Mainz (2001)

    Google Scholar 

  304. Pfrepper, G., Pfrepper, R., Kronenberg, A., Kratz, J.V., Nähler, A., Brüchle, W., Schädel, M.: Continuous on-line chromatography of short lived isotopes of tungsten as homolog of seaborgium (element 106). Radiochim. Acta 88, 273–278 (2000)

    Google Scholar 

  305. von Zweidorf, A., Angert, R., Brüchle, W., Bürger, S., Eberhartdt, K., Eichler, R., Hummrich, H., Jäger, E., Kling, H.-O., Kratz, J.V., Kuczewski, B., Langrock, G., Mendel, M., Rieth, U., Schädel, M., Schausten, B., Schimpf, E., Thörle, P., Trautmann, N., Tsukada, K., Wiehl, N., Wirth, G.: Evidence for the formation of sodium hassate(VIII). Radiochim. Acta 92, 855–861 (2004)

    Google Scholar 

  306. Caletka, R., Krivan, V.: Anion-exchage behaviour of some elements in HF-HCl medium. J. Radioanal. Nucl. Chem. 142, 373–382 (1990)

    Google Scholar 

  307. Caletka, R., Krivan, V.: Behaviour of 18 elements in HF and HF-NH4F media on anion exchanger in various ionic forms. J. Radioanal. Nucl. Chem. 142, 359–371 (1990)

    Google Scholar 

  308. Markus, Y. (ed.): Solvent Extraction Reviews, vol. 5. Marcel Dekker, New York (1971)

    Google Scholar 

  309. Aylett, B.J.: Group IIB. In: Baylar; J.C. (ed.) Comprehensive Inorganic Chemistry, Vol. 3, pp. 187–328. Pergamon Press, Oxford (1973)

    Google Scholar 

  310. Abel, E.W.: Lead. In: Baylar, J.C. (ed.) Comprehensive Inorganic Chemistry, vol. 2, pp. 105–146. Pergamon Press, Oxford (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Pershina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pershina, V. (2014). Theoretical Chemistry of the Heaviest Elements. In: Schädel, M., Shaughnessy, D. (eds) The Chemistry of Superheavy Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37466-1_3

Download citation

Publish with us

Policies and ethics