Skip to main content
  • 2644 Accesses

Abstract

There are various immunocompetent cells including the so-called macrophages in human nasal mucosa. Those cells are essential for a defense system against various invading pathogens such as bacteria and virus. On the other hand, those cells are also key players in the pathogenesis of rhinosinusitis and allergic rhinitis at the epithelial linings of nasal cavity and paranasal sinuses. Among them, macrophages are well known to have immunologically an important role as a scavenger cell and antigen-presenting cells (APCs), in order to mount innate and acquired immunity in the upper and lower respiratory tract (Kaneda et al., Auris Nasus Larynx 18:331–342, 1991;Yamada et al., Rhinology 43:190–198, 2005). In this chapter, general concept of macrophage lineage cells and its function are introduced, and the exact role of those cells in the pathogenesis of rhinosinusitis and allergic rhinitis can be discussed in accordance with previously published data and our unpublished data as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

    Article  PubMed  CAS  Google Scholar 

  • Albegger KW. Cluster formation in human nasal polyps. A light- and electron-microscopic investigation. ORL J Otorhinolaryngol Relat Spec. 1977;39(2):107–12.

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Shaw MH, et al. NOD-like receptors: role in innate immunity and inflammatory disease. Ann Rev Pathol. 2009;4:365–98.

    Article  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.

    Article  PubMed  CAS  Google Scholar 

  • Hume DA. Macrophages as APC and the dendritic cell myth. J Immunol. 2008;181(9):5829–35.

    PubMed  CAS  Google Scholar 

  • Ichimiya I, Kawauchi H, Fujiyoshi T, et al. Distribution of immunocompetent cells in normal nasal mucosa: comparisons among germ-free, specific pathogen-free, and conventional mice. Ann Otol Rhinol Laryngol. 1991;100(8):638–42.

    PubMed  CAS  Google Scholar 

  • Jahnsen FL, Gran E, Haye R, et al. Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am J Respir Cell Mol Biol. 2004;30:31–7.

    Article  PubMed  CAS  Google Scholar 

  • Jutras I, Desjardins M. Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol. 2005;21:511–27.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda N, Kawauchi H, Mogi G. Role of phagocytes in antimicrobial defense of the middle ear. Auris Nasus Larynx. 1991;18:331–42.

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;5:373–84.

    Article  Google Scholar 

  • Kawauchi H, DeMaria TF, Lim DJ. Endotoxin permeability through the round window. Acta Otolaryngol (Stockh) Suppl. 1998;457:100–15.

    Google Scholar 

  • Kawauchi H, Aoi N, Murata A, et al. Clinical application of mucosal immune system for down-rugulating nasal allergy. Arerugi. 2009;58(2):103–11.

    PubMed  CAS  Google Scholar 

  • Kawauchi H, Goda K, Tongu M, et al. Short review on sublingual immunotherapy for patients with allergic rhinitis: from bench to bedside. Adv Otorhinolaryngol. 2011;72:103–6.

    PubMed  Google Scholar 

  • Krysko O, Holtappels G, Zhang G, et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Allergy. 2011;66(3):396–403.

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev. 2002;82:97–130.

    PubMed  CAS  Google Scholar 

  • Mizuno S, Kanai T, Mikami Y, et al. CCR9(+) plasmacytoid dendritic cells in the small intestine suppress development of intestinal inflammation in mice. Immunol Lett. 2012;146(1–2):64–9.

    Article  PubMed  CAS  Google Scholar 

  • Nakano H, Gunn MD. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J Immunol. 2001;166:361–9.

    PubMed  CAS  Google Scholar 

  • Sallusto F, Baggiolini M. Chemokines and leukocyte traffic. Nat Immunol. 2008;9(9):949–52.

    Article  PubMed  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.

    Article  PubMed  CAS  Google Scholar 

  • Stanley ER. Lineage commitment: cytokines instruct, at last! Cell Stem Cell. 2009;5(3):234–6.

    Article  PubMed  CAS  Google Scholar 

  • Takamura K, Fukuyama S, Nagatake T, et al. Regulatory role of CCL19 and CCL21 in the control of allergic rhinitis. J Immunol. 2007;179(9):5897–906.

    PubMed  CAS  Google Scholar 

  • Taylor PR, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–44.

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Kataoka S, Ogasawara K, et al. Mucosal immunity of nasopharynx: an experimental study in TCR-transgenic (OVA23-3)mice. Rhinology. 2005;43:190–8.

    PubMed  Google Scholar 

  • Yamada T, Tongu M, Goda K, et al. Sublingual immunotherapy induces regulatory function of IL-10-expressing CD4+CD25+Foxp3+ T cells of cervical lymph nodes in murine allergic rhinitis model. J Allergy. 2012;2012:490905.

    Google Scholar 

  • Yogev N, Frommer F, Lukas D, et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity. 2012;37(2):264–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Kawauchi MD, DMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawauchi, H. (2013). Macrophage. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics