Skip to main content

Local Nasal Inflammation: T Cells and B Cells

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders

Abstract

The nose is a filter for air particles and infectious agents. The local immune system is well developed in the nose and the paranasal sinuses and is of major importance in controlling incoming infections. In the first part, we will describe this innate and adaptive immunity with its cells and mediators. However, under certain circumstances, the local inflammation persists and can result in diseases such as allergic and nonallergic rhinitis and chronic rhinosinusitis with and without nasal polyposis. These pathologies and their characterizing inflammation are described in the second part. Recent insights have emphasized the importance of this local nasal inflammation. The understanding of inflammatory cells, mediators, and pathways in different populations is essential to have a clear insight into the pathogenesis. Finally, we focus on local inflammation as a target for therapy. Phenotyping and endotyping based on local inflammation are important in tailoring the right treatment for the right patient. In nasal polyposis, we find a local IgE-mediated inflammation, independent of the presence of allergy, which can be treated successfully by anti-IgE treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AID:

Activation-induced cytidine deaminase

BCGF:

B-cell growth factor

Bcl6:

B-cell CLL lymphoma-6

BCR:

B-cell receptor

Blimp1:

B-lymphocyte-induced maturation protein 1

BSF-1:

B-cell stimulatory factor-1 = IL-4

c-Maf:

Musculoaponeurotic fibrosarcoma oncogene homolog

C-region:

Constant carboxy-terminal region

CCR-7:

C-C chemokine receptor type 7

CD:

Cluster of differentiation

CDR:

Complementary-determining region

CSF:

Colony-stimulating factors

CSIF:

Cytokine synthesis inhibitory factor

CXCL-13:

C-X-C chemokine ligand

CXCR-5:

C-X-C chemokine receptor type 5

DC:

Dendritic cells

Fab:

The antigen-binding site

FOXP3:

Forkhead box protein P3

GATA-3:

GATA-binding protein 3

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HMW-BCGF:

High molecular weight B-cell growth factor

ICOS:

Inducible co-stimulator

IFN:

Interferons

IFNγ:

Interferon-γ

Ig:

Immunoglobulins

Ih2:

Innate helper type 2 cells

IL:

Interleukin

IRF-4:

Interferon regulatory factor 4

iTreg cells:

The inducible Treg cells

LPS:

Lipopolysaccharide

M1:

Classically activated macrophages

MAF:

Macrophage-activating factor

MHC:

Major histocompatibility complex molecule

MPP type 2:

Multipotent progenitor cells

NAP:

Neutrophil-activating protein

NARES:

Nonallergic rhinitis with eosinophilia syndrome

NHC:

Natural helper cells

NK:

Natural killer cells

NLR:

NOD-like receptors

nTreg cells:

The naturally occurring Treg cells

PAMP:

Pathogen-associated molecular patterns

PpL:

Protein L of streptococcus magnus

RAG proteins:

Recombination-activating gene proteins

RORγt:

RAR-related orphan receptor gamma

SA:

Staphylococcus aureus

SAE:

Staphylococcus aureus enterotoxins

SCF:

Stem Cell Factor

SED:

Staphylococcal enterotoxin D

SHM:

Somatic hypermutation

SpA:

Protein A of Staphylococcus aureus

TBX 21:

T-box protein 21

TCR:

T-cell receptor

Tfh cells:

T follicular helper cells

TGFβ:

Tissue growth factor β

Th:

T helper cells

TLR:

Toll-like receptors

TNF:

Tumor necrosis factors

TNFβ:

Tumor necrosis factor-β

Treg:

T regulatory cells

TSLP:

Thymic stromal lymphopoietin

V-region:

Variable amino-terminal region

VDJ gene segment:

Variable diversity, or joining gene segment

Vβ:

Variable β-chain

References

  • Adamovic S, Amundsen SS, et al. Association study of IL2/IL21 and FcgRIIa: significant association with the IL2/IL21 region in Scandinavian coeliac disease families. Genes Immun. 2008;9(4):364–7.

    Article  PubMed  CAS  Google Scholar 

  • Alam R, Forsythe P, et al. Transforming growth factor beta abrogates the effects of hematopoietins on eosinophils and induces their apoptosis. J Exp Med. 1994;179(3):1041–5.

    Article  PubMed  CAS  Google Scholar 

  • Bachert C, Patou J, et al. The role of sinus disease in asthma. Curr Opin Allergy Clin Immunol. 2006;6(1):29–36.

    Article  PubMed  Google Scholar 

  • Bachert C, Gevaert P, et al. Role of staphylococcal superantigens in airway disease. Chem Immunol Allergy. 2007;93:214–36.

    Article  PubMed  CAS  Google Scholar 

  • Bachert C, Zhang N, et al. Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol. 2010;126(5):962–8. 968 e961–966.

    Article  PubMed  CAS  Google Scholar 

  • Barlow JL, McKenzie AN. Nuocytes: expanding the innate cell repertoire in type-2 immunity. J Leukoc Biol. 2011;90(5):867–74.

    Article  PubMed  CAS  Google Scholar 

  • Barlow JL, Bellosi A, et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012;129(1):191–8. e191–194.

    Article  PubMed  CAS  Google Scholar 

  • Bennett CL, Christie J, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.

    Article  PubMed  CAS  Google Scholar 

  • Ediger D, Sin BA, et al. Airway inflammation in nasal polyposis: immunopathological aspects of relation to asthma. Clin Exp Allergy. 2005;35(3):319–26.

    Article  PubMed  CAS  Google Scholar 

  • Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33(3–4):222–30.

    Article  PubMed  CAS  Google Scholar 

  • Fazilleau N, Mark L, et al. Follicular helper T cells: lineage and location. Immunity. 2009;30(3):324–35.

    Article  PubMed  CAS  Google Scholar 

  • Fort MM, Cheung J, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–95.

    Article  PubMed  CAS  Google Scholar 

  • Gevaert P, Holtappels G, et al. Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue. Allergy. 2005;60(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  • Gevaert P, Van Bruaene N, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011;128(5):989–95. e1-8.

    Article  PubMed  CAS  Google Scholar 

  • Gevaert P, Calus L, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2012;pii:S0091-6749(12)01294-8.

    Google Scholar 

  • Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8(3):205–17.

    Article  PubMed  CAS  Google Scholar 

  • Groot Kormelink T, Calus L, et al. Local free light chain expression is increased in chronic rhinosinusitis with nasal polyps. Allergy. 2012;67(9):1165–72.

    Article  PubMed  CAS  Google Scholar 

  • Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8(3):193–204.

    Article  PubMed  CAS  Google Scholar 

  • Hammad H, Plantinga M, et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207(10):2097–111.

    Article  PubMed  CAS  Google Scholar 

  • Headley MB, Zhou B, et al. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J Immunol. 2009;182(3):1641–7.

    PubMed  CAS  Google Scholar 

  • Jankowski R. Eosinophils in the pathophysiology of nasal polyposis. Acta Otolaryngol. 1996;116(2):160–3.

    Article  PubMed  CAS  Google Scholar 

  • Kang K, Reilly SM, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7(6):485–95.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan AP. Allergy. 2nd ed. New York: Saunders; 1997.

    Google Scholar 

  • King C, Tangye SG, et al. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol. 2008;26:741–66.

    Article  PubMed  CAS  Google Scholar 

  • KleinJan A, Vinke JG, et al. Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. Eur Respir J. 2000;15(3):491–7.

    Article  PubMed  CAS  Google Scholar 

  • Kotzin BL, Leung DY, et al. Superantigens and their potential role in human disease. Adv Immunol. 1993;54:99–166.

    Article  PubMed  CAS  Google Scholar 

  • Koyasu S, Moro K. Innate Th2-type immune responses and the natural helper cell, a newly identified lymphocyte population. Curr Opin Allergy Clin Immunol. 2011;11(2):109–14.

    Article  PubMed  CAS  Google Scholar 

  • Krysko O, Holtappels G, et al. Alternatively activated macrophages and impaired phagocytosis of S. Aureus in chronic rhinosinusitis. Allergy. 2011;66(3):396–403.

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Stingl G. Immunoglobulin E-binding structures on antigen-presenting cells present in skin and blood. J Invest Dermatol. 1995;104(5):707–10.

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Fiebiger S, et al. Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol. 1996;157(2):607–16.

    PubMed  CAS  Google Scholar 

  • Mills KH, McGuirk P. Antigen-specific regulatory T cells–their induction and role in infection. Semin Immunol. 2004;16(2):107–17.

    Article  PubMed  CAS  Google Scholar 

  • Neill DR, McKenzie AN. Nuocytes and beyond: new insights into helminth expulsion. Trends Parasitol. 2011;27(5):214–21.

    Article  PubMed  CAS  Google Scholar 

  • Neill DR, Wong SH, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–70.

    Article  PubMed  CAS  Google Scholar 

  • Novak N, Allam JP, et al. Characterization of FcepsilonRI-bearing CD123 blood dendritic cell antigen-2 plasmacytoid dendritic cells in atopic dermatitis. J Allergy Clin Immunol. 2004;114(2):364–70.

    Article  PubMed  CAS  Google Scholar 

  • Oliphant CJ, Barlow JL, et al. Insights into the initiation of type 2 immune responses. Immunology. 2011;134(4):378–85.

    Article  PubMed  CAS  Google Scholar 

  • Patou J, Gevaert P, et al. Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. J Allergy Clin Immunol. 2008;121(1):110–5.

    Article  PubMed  CAS  Google Scholar 

  • Pawankar R, Okuda M, et al. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997;99(7):1492–9.

    Article  PubMed  CAS  Google Scholar 

  • Pawankar R, Mori M, et al. Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy. 2011;1(3):157–67.

    Article  PubMed  Google Scholar 

  • Plager DA, Kahl JC, et al. Gene transcription changes in asthmatic chronic rhinosinusitis with nasal polyps and comparison to those in atopic dermatitis. PLoS One. 2010;5(7):e11450.

    Article  PubMed  Google Scholar 

  • Powe DG, Bonnin AJ, et al. ‘Entopy’: local allergy paradigm. Clin Exp Allergy. 2010;40(7):987–97.

    Article  PubMed  CAS  Google Scholar 

  • Price AE, Liang HE, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A. 2010;107(25):11489–94.

    Article  PubMed  CAS  Google Scholar 

  • Quinn GA, Cole AM. Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology. 2007;122(1):80–9.

    Article  PubMed  CAS  Google Scholar 

  • Redegeld FA, Nijkamp FP. Immunoglobulin free light chains and mast cells: pivotal role in T-cell-mediated immune reactions? Trends Immunol. 2003;24(4):181–5.

    Article  PubMed  CAS  Google Scholar 

  • Reh DD, Wang Y, et al. Treatment-recalcitrant chronic rhinosinusitis with polyps is associated with altered epithelial cell expression of interleukin-33. Am J Rhinol Allergy. 2010;24(2):105–9.

    Article  PubMed  Google Scholar 

  • Rondon C, Romero JJ, et al. Local IgE production and positive nasal provocation test in patients with persistent nonallergic rhinitis. J Allergy Clin Immunol. 2007;119(4):899–905.

    Article  PubMed  CAS  Google Scholar 

  • Rondon C, Canto G, et al. Local allergic rhinitis: a new entity, characterization and further studies. Curr Opin Allergy Clin Immunol. 2010;10(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  • Saenz SA, Taylor BC, et al. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev. 2008;226:172–90.

    Article  PubMed  CAS  Google Scholar 

  • Saenz SA, Siracusa MC, et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464(7293):1362–6.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Owyang A, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  PubMed  CAS  Google Scholar 

  • Silberstein DS. Eosinophil function in health and disease. Crit Rev Oncol Hematol. 1995;19(1):47–77.

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar PV, Foster DC, et al. Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology. 2004;112(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  • Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2008;26:57–79.

    Article  PubMed  CAS  Google Scholar 

  • Spolski R, Leonard WJ. IL-21 and T follicular helper cells. Int Immunol. 2010;22(1):7–12.

    Article  PubMed  CAS  Google Scholar 

  • Thurman JM, Renner B. Dynamic control of the complement system by modulated expression of regulatory proteins. Lab Invest. 2011;91(1):4–11.

    Article  PubMed  CAS  Google Scholar 

  • Umetsu DT, DeKruyff RH. The regulation of allergy and asthma. Immunol Rev. 2006;212:238–55.

    Article  PubMed  CAS  Google Scholar 

  • Van Bruaene N, Perez-Novo CA, et al. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 2008;121(6):1435–41. 1441 e1431–1433.

    Article  PubMed  Google Scholar 

  • Van Zele T, Claeys S, et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006;61(11):1280–9.

    Article  PubMed  Google Scholar 

  • White J, Herman A, et al. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989;56(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Tan AH, et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature. 2007;450(7167):299–303.

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Van Zele T, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008;122(5):961–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Holtappels G, et al. Mucosal tissue polyclonal IgE is functional in response to allergen and SEB. Allergy. 2011;66(1):141–8.

    Article  PubMed  Google Scholar 

  • Zhou B, Comeau MR, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol. 2005;6(10):1047–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gevaert MD, PhD .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 4.1 Interferons
Table 4.2 Interleukins
Table 4.3 Colony-stimulating factor
Table 4.4 Growth and differentiation factors
Table 4.5 Tumor necrosis factor
Table 4.6 Transcription factors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Schryver, E., Calus, L., Derycke, L., Bachert, C., Gevaert, P. (2013). Local Nasal Inflammation: T Cells and B Cells. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics