Skip to main content

Superlinear Speedup for Matrix Multiplication in GPU Devices

  • Conference paper
ICT Innovations 2012 (ICT Innovations 2012)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 207))

Included in the following conference series:

Abstract

Speedup in parallel execution on SIMD architecture according to Amdahl’s Law is finite. Further more, according to Gustrafson’s Law, there are algorithms that can achieve almost linear speedup. However, researchers have found some examples of superlinear speedup for certain types of algorithms executed on specific multiprocessors.

In this paper we achieved superlinear speedup for GPU devices, which are also categorized as SIMD. We implement a structure persistent algorithm which efficiently exploits the shared cache memory and avoids cache misses as much as possible. Our theoretical analysis and experimental results show the existence of superlinear speedup for algorithms that run on existing GPU device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, April 18-20, vol. 30, pp. 483–485. AFIPS Press, Reston (1967)

    Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Soc. for Ind. and Appl. Math., 3rd edn., PA (1999)

    Google Scholar 

  3. Bell, N., Garland, M.: The impact of cache misses on the performance of matrix product algorithms on multicore platforms. Research Report NVR-2008-004 (December 2008), http://hal.inria.fr/inria-00537822/en/

  4. Blackford, L.S., et al.: An updated set of basic linear algebra subprograms (blas). ACM Trans. Math. Softw. 28(2), 135–151 (2002)

    Article  MathSciNet  Google Scholar 

  5. Clarke, D., Lastovetsky, A., Rychkov, V.: Column-based matrix partitioning for parallel matrix multiplication on heterogeneous processors based on functional performance models. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 450–459. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. DeFlumere, A., Lastovetsky, A., Becker, B.: Partitioning for parallel matrix-matrix multiplication with heterogeneous processors: The optimal solution. In: HCW 2012. IEEE Computer Society, Shanghai (2012)

    Google Scholar 

  7. Glaskowsky, P.: Nvidias fermi: the first complete gpu computing architecture. Tech. rep., NVIDIA (2009) (white Paper)

    Google Scholar 

  8. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley (January 2003)

    Google Scholar 

  9. Gusev, M., Ristov, S.: Superlinear speedup in windows azure cloud. Tech. Rep. IIT:06-12, University Ss Cyril and Methodius, Skopje, Macedonia, Faculty of Information Sciences and Computer Engineering (July 2012)

    Google Scholar 

  10. Gustafson, J.L.: Reevaluating amdahl’s law. ACM 31(5), 532–533 (1988)

    Article  Google Scholar 

  11. Jacquelin, M., Marchal, L., Robert, Y.: The impact of cache misses on the performance of matrix product algorithms on multicore platforms. Research Report RR-7456, INRIA (November 2010), http://hal.inria.fr/inria-00537822/en/

  12. Kirk, D., Hwu, W.M.: Programming Massively Parallel Processors: A Hands-on Approach, 1st edn. Morgan Kaufmann Publishers Inc., USA (2010)

    Google Scholar 

  13. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: A unified graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

    Article  Google Scholar 

  14. Nath, R., Tomov, S., Dongarra, J.: An improved magma gemm for fermi graphics processing units. Int. J. High Perf. C. App. 24(4), 511–515 (2010)

    Article  Google Scholar 

  15. Nickolls, J., Dally, W.: The gpu computing era. IEEE Micro 30(2), 56–69 (2010)

    Article  Google Scholar 

  16. NVIDIA: Cuda programming guide (Auguest 2012), http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf/

  17. NVIDIA: Next generation cuda compute architecture: Kepler gk110 (2012)

    Google Scholar 

  18. Playne, D.P., Hawick, K.A.: Comparison of gpu architectures for asynchronous communication with finite-differencing applications. Concurrency and Computation: Practice and Experience 24(1), 73–83 (2012)

    Article  Google Scholar 

  19. Ristov, S., Gusev, M.: Superlinear speedup for matrix multiplication. In: Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces, pp. 499–504 (2012)

    Google Scholar 

  20. Ristov, S., Gusev, M., Kostoska, M., Kjiroski, K.: Virtualized environments in cloud can have superlinear speedup. In: ACM Proceedings of 5th Balkan Conference of Informatics, BCI 2012 (2012)

    Google Scholar 

  21. Volkov, V., Demmel, J.W.: Benchmarking gpus to tune dense linear algebra. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008, pp. 31:1–31:11. IEEE Press, Piscataway (2008)

    Google Scholar 

  22. Wittenbrink, C.M., Kilgariff, E., Prabhu, A.: Fermi gf100 gpu architecture. IEEE Micro 31(2), 50–59 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Djinevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Djinevski, L., Ristov, S., Gusev, M. (2013). Superlinear Speedup for Matrix Multiplication in GPU Devices. In: Markovski, S., Gusev, M. (eds) ICT Innovations 2012. ICT Innovations 2012. Advances in Intelligent Systems and Computing, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37169-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37169-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37168-4

  • Online ISBN: 978-3-642-37169-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics