Skip to main content

Second-Order Differential Inclusions

  • Chapter
  • First Online:
Method of Guiding Functions in Problems of Nonlinear Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2076))

  • 894 Accesses

Abstract

Various aspects of the theory of second-order differential inclusions attract the attention of many researchers (see., e.g., [1, 2, 6, 12, 18, 42, 46, 47, 68, 70, 97]). In this chapter we consider the boundary value problem of form

$$\displaystyle{ {u}^{{\prime\prime}}\in Q(u),\;\;u(0) = u(1) = 0, }$$
(4.1)

for second-order differential inclusions which arises naturally from some physical and control problems. Using the method of guiding functions we study the existence of solutions of problem (4.1) in an one-dimensional and in Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Affane, D. Azzam-Laouir, A control problem governed by a second order differential inclusion. Appl. Anal. 88(12), 1677–1690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation theorems for second order differential inclusions. Int. J. Dyn. Syst. Differ. Equat. 1(2), 85–88 (2007)

    MathSciNet  MATH  Google Scholar 

  3. J. Andres, L. Malaguti, M. Pavlaçkova, Strictly localized bounding functions for vector second-order boundary value problems. Nonlinear Anal. 71(12), 6019–6028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.P. Avgerinos, N.S. Papageorgiou, N. Yannakakis, Periodic solutions for second order differential inclusions with nonconvex and unbounded multifunction. Acta Math. Hung. 83(4), 303–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Benchohra, S.K. Ntouyas, Controllability of second-order differential inclusions in Banach spaces with nonlocal conditions. J. Optim. Theor. Appl. 107(3), 559–571 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. K.C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33(2), 117–146 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Domachowski, J. Gulgowski, A global bifurcation theorem for convex-valued differential inclusions. Z. Anal. Anwendungen 23(2), 275–292 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Ekland, R. Temam, Convex Analysis and Variation Problems (North Holland, Amsterdam, 1979)

    Google Scholar 

  9. L. Erbe, W. Krawcewicz, Boundary value problems for second order nonlinear differential inclusions, in Qualitative Theory of Differential Equations, Szeged, 1988. Colloq. Math. Soc. Janos Bolyai, vol. 53 (North-Holland, Amsterdam, 1990), pp. 163–171

    Google Scholar 

  10. L. Erbe, W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rocky Mt. J. Math. 22(2), 519–539 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Górniewicz, in Topological Fixed Point Theory of Multivalued Mappings, 2nd edn. Topological Fixed Point Theory and Its Applications, vol. 4 (Springer, Dordrecht, 2006)

    Google Scholar 

  12. S.R. Grace, R.P. Agarwal, D. O’Regan, A selection of oscillation criteria for second-order differential inclusions. Appl. Math. Lett. 22(2), 153–158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Hakl, P.J. Torres, On periodic solutions of secord-order differential equations with attractive-repulsive singularities. J. Differ. Equat. 248, 111–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ph. Hartman, in Ordinary Differential Equations. Corrected reprint of the second (1982) edition (Birkhauser, Boston). Classics in Applied Mathematics, vol. 38 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002)

    Google Scholar 

  15. M. Kamenskii, V. Obukhovskii, P. Zecca, in Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applications, vol. 7 (Walter de Gruyter, Berlin, 2001)

    Google Scholar 

  16. M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Nauka, Moscow, 1983) (in Russian); English translation (Springer, Berlin, 1989)

    Google Scholar 

  17. M.A. Krasnosel’skii, A.V. Pokrovskii, On elliptic equations with discontinuous nonlinearities (in Russian). Dokl. Akad. Nauk 342(6), 731–734 (1995)

    Google Scholar 

  18. S. Kyritsi, N. Matzakos, N.S. Papageorgiou, Periodic problems for strongly nonlinear second-order differential inclusions. J. Differ. Equat. 183(2), 279–302 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Obukhovskii, P. Zecca, V. Zvyagin, On coincidence index for multivalued perturbations of nonlinear Fredholm maps and some applications. Abstr. Appl. Anal. 7(6), 295–322 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Okochi, On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators. J. Funct. Anal. 91(2), 246–258 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Schwartz, Cours d’Analyse. 1, 2nd edn. (Hermann, Paris, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obukhovskii, V., Zecca, P., Van Loi, N., Kornev, S. (2013). Second-Order Differential Inclusions. In: Method of Guiding Functions in Problems of Nonlinear Analysis. Lecture Notes in Mathematics, vol 2076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37070-0_4

Download citation

Publish with us

Policies and ethics