Skip to main content

Abstract

Insect pests exhibit a diverse array of genetic-based responses when interacting with crop systems; these changes can be in response to pathogens, symbiotic microbes, host plants, chemicals, and the environment. Agricultural research has for decades focused on gathering crucial information on the biochemical, genetic, and molecular realms that deal with plant–insect interactions in changing ecosystems. Environmental conditions, which include the overall conditions of climate change, are a reality that needs to be considered as one of the crucial phenomena of changing ecosystems when planning future crop security and/or pest management strategies. Focused research in documenting the interactions that occur between crop systems and insect pests under changing climates will be a needed addition to current research efforts whose aim is to define future strategies that crop scientists relate to the broader societal concerns of food security in an ever-changing environment. This chapter attempts to integrate the past and present research in classical and molecular breeding, transgenic technology, and pest management within the context of climate change. The integrated approach will direct present research efforts that aim at creating plant–insect pest interaction–climate change models that reliably advise future strategies to develop improved insect-resistant, climate-resilient plant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arimura G-I, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    PubMed  CAS  Google Scholar 

  • Baker RHA, Sansford CE, Jarvis CH, Canon RJC, MacLeod A, Walters KFA (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecosyst Environ 82:57–71

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer M et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Google Scholar 

  • Bale JS, van Lanteren JC, Bigler F (2008) Biological control and sustainable food production. Phil Trans R Soc Lond Sr B 363:761–776

    CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    PubMed  CAS  Google Scholar 

  • Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ et al (2010) Breeding wheat for resistance to insects. Plant Breed Rev 22. doi: 10.1002/9780470650202.ch5

    Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant–insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Google Scholar 

  • Birch ANE, Jones AT, Fenton B, Malloch G, Geoghegan I et al (2002) Resistance-breaking raspberry aphid biotypes: constraints to sustainable control through plant breeding. Acta Hortic 585:315–317

    Google Scholar 

  • Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C (2010) Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet 121:9–20

    PubMed  Google Scholar 

  • Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Prot 9:351–354

    Google Scholar 

  • Bus VGM, Chagne D, Bassett HCM, Bowatte D, Calenge F et al (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:233–236

    Google Scholar 

  • Butron A, Chen YC, Rottinghaus GE, McMullen MD (2010) Genetic variation at bx1 controls DIMBOA content in maize. Theor Appl Genet 120:721–734

    PubMed  Google Scholar 

  • Castro AM, Vasicek A, Manifiesto M, Gimenez DO, Tacaliti MS et al (2005) Mapping antixenosis genes on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat aphid. Plant Breed 124:229–233

    CAS  Google Scholar 

  • Cheke RA, Tratalos JA (2007) Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57:145–153

    Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, Bridges WC (2003) Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    PubMed  CAS  Google Scholar 

  • Christou P (2005) Sustainable and durable insect pest resistance in transgenic crops. http://www.isb.vt.edu/news/2005/artspdf/aug0503.pdf

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and disease management. Annu Rev Phytopathol 37:399–426

    PubMed  CAS  Google Scholar 

  • Cornelissen T (2011) Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop Entomol 40:155–163

    PubMed  CAS  Google Scholar 

  • Coviella C, Trumble J (1999) Effects of elevated atmospheric carbon dioxide on insect plant interactions. Conserv Biol 13:700–712

    Google Scholar 

  • Coviella CE, Morgan DJ, Trumble JT (2000) Interactions of elevated CO2 and nitrogen fertilization: effects on production of Bacillus thuringiensis toxins in transgenic plants. Environ Entomol 29:781–787

    CAS  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    PubMed  Google Scholar 

  • De Lucia E, Nabity P, Zavala J, Berenbaum M (2012) Climate change: resetting plant-insect interactions. Plant Physiol. doi: 10.1104/pp.112.204750

    Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton DO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the Glasshouse Potato Aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    CAS  Google Scholar 

  • Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498

    PubMed  CAS  Google Scholar 

  • Duan CX, Su N, Cheng ZJ, Lei CL, Wang JL et al (2010) QTL analysis for the resistance to small brown planthopper (Laodelphax striatellus Fallen) in rice using backcross inbred lines. Plant Breed 129:63–67

    CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    PubMed  CAS  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    PubMed  Google Scholar 

  • Epstein PR, Diaz HF, Elias S, Grabherr G, Graham NE et al (1998) Biological and physical signs of climate change: focus on mosquito borne diseases. Bull Am Meteorol Soc 79:409–417

    Google Scholar 

  • Erasmus BFN, van Jaarsveld AS, Chown S, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Change Biol 8:679–693

    Google Scholar 

  • Fleming RA, Tatchell GM (1995) Shifts in the flight season of British aphids: a response to climate warming? In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic, London, pp 505–508

    Google Scholar 

  • Fleming RA, Volney WJA (1995) Effects of climate change on insect defoliator population processes in Canada boreal forest—some plausible scenarios. Water Air Soil Poll 82:445–454

    CAS  Google Scholar 

  • Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    PubMed  CAS  Google Scholar 

  • Gahan LJ, Ma YT, Coble MLM, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98:1357–1368

    PubMed  CAS  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    PubMed  CAS  Google Scholar 

  • Gassmann AJ, Carriere Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163

    PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Gatehouse JA (1998) Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pestic Sci 52:165–175

    CAS  Google Scholar 

  • Gatehouse AMR, Down RE, Powell KS, Sauvion N, Rahbe Y, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1996) Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol Exp Appl 34:295–307

    Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    CAS  Google Scholar 

  • Graham J, McNicol RJ, Greig K (1995) Towards genetic based insect resistance in strawberry using the cowpea trypsin inhibitor. Ann Appl Biol 127:163–173

    CAS  Google Scholar 

  • Grainnet (2007) Monsanto and Dow agrosciences launch “SmartStax”, industry’s first-ever eight-gene stacked combination in corn. http://www.grainnet.com/

  • Gregory RD, Willis SG, Jiguet F, Voříšek P, Klvaňová A et al (2009) An indicator of the impact of climatic change on European bird populations. PLoS One 4:e4678

    PubMed  Google Scholar 

  • Guo H, Sun Y, Ren Q, Zhu-Salzman K, Kang L, Wang C, Li C, Ge F (2012) Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS One 7(7):e41426

    PubMed  CAS  Google Scholar 

  • Haack RA, Byler JW (1993) Insects and pathogens: regulators of forest ecosystems. J For 1:32–37

    Google Scholar 

  • Hamilton JM, Maddison DJ, Tol RSJ (2005) Climate change and international tourism: a simulation study. Global Environ Change 15:253–266

    Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    PubMed  CAS  Google Scholar 

  • Harrington R, Clark SJ, Welham SJ, Verrier PJ, Denholm CH, Hulle M, Maurice D, Rounsevell MD, Cocu N (2007) Environmental change and the phenology of European aphids. Glob Change Biol 13:1550–1564

    Google Scholar 

  • Heath R, McDonald G, Christeller JT, Lee M, Bateman K, West J, van Heeswijck R, Anderson MA (1997) Proteinase inhibitors from Nicotiana alata enhance plant resistance to insect pests. J Insect Physiol 43:833–842

    PubMed  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sherman SE, Barker RF, Boulter D (1987) A novel mechanism for insect resistance engineered into tobacco. Nature 330:160–163

    CAS  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    PubMed  CAS  Google Scholar 

  • Hulme M, Dohrety R, Ngara T, New M, Lister D (2001) African climate change 1900–2100. Clim Res 17:145–168

    Google Scholar 

  • Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric For Entomol 3:77–84

    Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW et al (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    PubMed  CAS  Google Scholar 

  • Ingram JSI, Gregory PJ, Izac A-M (2008) The role of agronomic research in climate change and food security policy. Agric Ecosyst Environ 126:4–12

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. Summary for policymakers. Contribution of working group I to the 3rd assessment report of the IPCC. IPCC Secretariat, Geneva

    Google Scholar 

  • IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ et al (eds) Climate change 2001: the scientific basis. Contribution of working group to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 94 p

    Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed a-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315

    CAS  Google Scholar 

  • James C (2008) Global status of commercialized biotech/GM crops: 2008 (ISAAA Brief 39), International Service for the Acquisition of Agri-biotech Applications. http://isaaa.org/resources/publications/briefs/39/download/isaaa-brief-39-2008.pdf

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875

    PubMed  CAS  Google Scholar 

  • Johnson SN, Anderson A, Dawson G, Griffiths DW (2008) Varietal susceptibility of potatoes to wireworm herbivory. Agric For Entomol 10:167–174

    Google Scholar 

  • Kos M, van Loon JJA, Dicke M, Vet EM (2009) Transgenic plants as vital components of integrated pest management. Trends Biotechnol 27:621–627

    PubMed  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    PubMed  CAS  Google Scholar 

  • Kramer KJ, Morgan TD, Throne JE, Dowell FE, Bailey M, Howard JA (2000) Transgenic avidin maize is resistant to storage insect pests. Nat Biotechnol 18:670–674

    PubMed  CAS  Google Scholar 

  • LaMarche VC, Grabyll DA, Fritts HC, Rose MR (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225:1019–1021

    PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    PubMed  CAS  Google Scholar 

  • Leple JC, Bonade-Bottino M, Augustin S, Pilate G, Dumanois G, Le Tan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328

    CAS  Google Scholar 

  • Malloch G, Highet F, Kasprowicz L, Pickup J, Neilson R, Fenton B (2006) Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps. Bull Entomol Res 96:573–582

    PubMed  CAS  Google Scholar 

  • Mcvean R, Dixon AFG (2001) The effect of plant drought-stress on populations of the pea aphid Acyrthosiphon pisum. Ecol Entomol 26:440–443

    Google Scholar 

  • Mehlo L, Gahakwa D, Nghia P-T, Loc N-T, Capell T, Gatehouse J, Gatehouse A, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci USA 102:7812–7816

    PubMed  CAS  Google Scholar 

  • Moellenbeck DJ, Peters ML, Bing JW, Rouse JR, Higgins LS, Sims L, Nevshemal T, Marshall L, Ellis RT, Bystrak PG et al (2001) Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat Biotechnol 19:668–672

    PubMed  CAS  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    PubMed  CAS  Google Scholar 

  • Murray PJ, Hatch DJ, Cliquet JB (1996) Impact of insect root herbivory on the growth and nitrogen and carbon contents of white clover (Trifolium repens) seedlings. Can J Bot 74:1591–1595

    Google Scholar 

  • Naimov S, Dukiandjiev S, de Maagd RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57

    PubMed  CAS  Google Scholar 

  • Newman JA (2004) Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics. Glob Change Biol 10:5–15

    Google Scholar 

  • O’Neill BF, Zangerl AR, Dermody O, Bilgin DD, Casteel CL, Zavala JA, DeLucia EH, Berenbaum MR (2010) Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max L.). J Chem Ecol 36:35–45

    PubMed  Google Scholar 

  • Painter RH (1941) The economic value and biologic significance of insect resistance in plants. J Econ Entomol 34:358–367

    Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. University of Kansas Press, Lawrence, KS, 520 p

    Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CABI/IRRI, Wallingford/Manila, 431 p

    Google Scholar 

  • Parker WE, Howard J (2001) The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agric For Entomol 3:85–98

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67

    Google Scholar 

  • Penuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    PubMed  CAS  Google Scholar 

  • Petzoldt C, Seaman A (2007) Climate change effects on insects and pathogens. Fact Sheet. http://www.climateandfarming.org/pdfs/FactSheets/III.2Insects.Pathogens.pdf

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP et al (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    PubMed  CAS  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci 40:233–238

    Google Scholar 

  • Regniere J (1983) An oviposition model of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can Entomol 115:1371–1382

    Google Scholar 

  • Reiners S, Petzoldt C (2005) Integrated crop and pest management guidelines for commercial vegetable production. Cornell Cooperative Extension publication #124VG. http://www.nysaes.cornell.edu/recommends/

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343

    PubMed  CAS  Google Scholar 

  • Scherm H (2004) Climate change: can we predict the impacts on plant pathology and pest management? Can J Plant Pathol 26:267–273

    Google Scholar 

  • Scherm H, Sutherst RW, Harrington R, Ingram JSI (2000) Global networking for assessment of impacts of global change on plant pests. Environ Poll 108:333–341

    CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic peas expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796

    CAS  Google Scholar 

  • Smith CM (1989) Plant resistance to insects: a fundamental approach. Wiley, New York, 286 p

    Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer, Dordrecht, 423 p

    Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    PubMed  CAS  Google Scholar 

  • Soussana JF, Hartwig UA (1996) The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332

    CAS  Google Scholar 

  • Stacey DA, Fellowes MDE (2002) Influence of temperature on pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) resistance to natural enemy attack. Bull Entomol Res 92:351–357

    PubMed  CAS  Google Scholar 

  • Staley JT, Johnson SN (2008) Climate change impacts on root herbivores. In: Johnson SN, Murray PJ (eds) Root feeders: an ecosystem perspective. CABI, Wallingford, UK, pp 192–213

    Google Scholar 

  • Staley JT, Hodgson CJ, Mortimer SR, Morecroft MD, Masters GJ, Brown VK, Taylor ME (2007) Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur J Soil Biol 43:189–198

    Google Scholar 

  • Stewart SD, Adamczyk JJ, Knighten KS, Davis FM (2001) Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. J Econ Entomol 94:752–760

    PubMed  CAS  Google Scholar 

  • Stoeckli S, Mody K, Gessler C, Patocchi A, Jermini M, Dorn S (2008) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes 4:833–847

    Google Scholar 

  • Sun Y, Yin J, Cao H, Li C, Kang L, Ge F (2011) Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One 6(5):e19751

    PubMed  CAS  Google Scholar 

  • Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS et al (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038

    PubMed  CAS  Google Scholar 

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA et al (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107:116–122

    PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ et al (2004) Extinction risk from climate change. Nature 427:145–148

    PubMed  CAS  Google Scholar 

  • Trumble JT (1998) IPM: overcoming conflicts in adoption. Integr Pest Manage Rev 3:195–207

    Google Scholar 

  • Trumble JT, Butler CD (2009) Climate change will exacerbate California’s insect pest problems. Cal Agric 63(2):73–78

    Google Scholar 

  • Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Groth M, Howe A, Johnson S, Kolacz K et al (2005) A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci 45:931–938

    CAS  Google Scholar 

  • Vincent C, Hallman G, Panneton B, Fleurat-Lessardú F (2003) Management of agricultural insects with physical control methods. Annu Rev Entomol 48:261–281

    PubMed  CAS  Google Scholar 

  • Von Braun J (2007) The world food situation: new driving forces and required actions. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    PubMed  CAS  Google Scholar 

  • Xu DP, Xue QZ, McElroy D, Mawal Y, Hilder VA, Wu R (1996) Constitutive expression of a cowpea trypsin-inhibitor gene, CpTI, in transgenic rice plants confers resistance of two major rice insect pests. Mol Breed 2:167–173

    CAS  Google Scholar 

  • Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45:393–422

    PubMed  CAS  Google Scholar 

  • Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci USA 105:5129–5133

    PubMed  CAS  Google Scholar 

  • Zhang P, Wang Y, Zhang J, Maddock S, Snook M, Peterson T (2003) A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Mol Biol 52:1–15

    PubMed  CAS  Google Scholar 

  • Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430

    PubMed  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Glob Change Biol 12:27–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakanth Emani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Emani, C., Hunter, W. (2013). Insect Resistance. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_9

Download citation

Publish with us

Policies and ethics