Skip to main content

Higher Order Sliding Mode Control by Keeping a 2-Sliding Constraint

  • Chapter
Advances in Sliding Mode Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 440))

  • 5759 Accesses

Abstract

This article investigates a new algorithm for higher order sliding mode control. The proposed control law keeps a constraint in 2-sliding mode such that the finite time stabilization of the chain of integrators is achieved. The proposed switching function has relative degree two with respect to the input and a second order sliding controller is used. The twisting controller is used for achieving finite time convergent 2-sliding mode to the switching manifold. The switching manifold is designed to provide finite time convergence of the integrator chain. The fractional powers in the switching function are carefully designed to prevent the unboundedness or singularity arising because of the switching constraint being kept at zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhat, S.P., Bernstein, D.S.: Finite-Time Stability of Homogeneous Systems. In: Proceedings of American Control Conference, pp. 2513–2514 (1997)

    Google Scholar 

  2. Bhat, S.P., Bernstein, D.S.: Continuous, Bounded, Finite-Time Stabilization of the Translational and Rotational Double Integrators. IEEE Transactions on Automatic Control 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals, and Systems 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cong, S., Li, G., Feng, X.: Parameters Identification of Nonlinear DC Motor Model Using Compound Evolution Algorithms. In: Proceedings of World Congress on Engineering, London (June 2010)

    Google Scholar 

  5. Feng, Y., Han, X., Wang, Y., Yu, X.: Second-order terminal sliding mode control of uncertain multivariable systems. International Journal of Control 80(6), 856–862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gulati, S., Venkataraman, S.T.: Control of nonlinear systems using terminal sliding modes. In: American Control Conferece, pp. 891–893 (1992)

    Google Scholar 

  8. Haimo, V.T.: Finite time controllers. SIAM Journal on Control and Optimization 24, 760–770 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong, Y.: Finite-time stabilization and stabilizability of a class of controllable systems. Systems & Control Letters 46(4), 231–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawski, M.: Geometric Homogeneity and Stabilization. In: Proc. IFAC Nonlinear Control Symposium, Lake Tahoe, CA, pp. 164–169 (1995)

    Google Scholar 

  11. Levant, A.: Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58, 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levant, A.: Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence. IEEE Transactions on Automatic Control 46(9), 1447–1451 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Levant, A.: Construction Principles of Output Feedback 2-Sliding Mode Design. In: 41st IEEE Conference on Decision and Control, pp. 317–322. IEEE (2002)

    Google Scholar 

  14. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mouley, E., Perruquetti, W.: Finite-Time Stability and Stabilization:State of the art. Springer (2006)

    Google Scholar 

  16. Plestan, F., Glumineau, A., Laghrouche, S.: A new algorithm for high-order sliding mode control. International Journal of Robust and Nonlinear Control 18, 441–453 (2008)

    Article  MathSciNet  Google Scholar 

  17. Yu, X., Man, Z.: Multi-input uncertain linear systems with terminal sliding-mode control. Automatica 34(3), 389–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhihong, M., Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44, 1065–1070 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasiddh Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trivedi, P., Bandyopadhyay, B. (2013). Higher Order Sliding Mode Control by Keeping a 2-Sliding Constraint. In: Bandyopadhyay, B., Janardhanan, S., Spurgeon, S. (eds) Advances in Sliding Mode Control. Lecture Notes in Control and Information Sciences, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36986-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36986-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36985-8

  • Online ISBN: 978-3-642-36986-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics