Skip to main content

HTT Evolution and Brain Development

  • Chapter
  • First Online:
Programmed Cells from Basic Neuroscience to Therapy

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE,volume 20))

  • 1056 Accesses

Abstract

Huntingtin (htt) is the 800 million-year-old 3,144 amino acid protein product of the Huntington’s disease (HD) gene, which carries a tri-nucleotide CAG repeat then translated into polyglutamine (polyQ) at an evolutionarily conserved NH2-terminal position in exon 1. The CAG triplet is polymorphic in the normal population, ranging from 9 to 32 repetitions. In humans, an expansion of the repeats to more than 35 causes HD, a fatal, genetically dominant neurodegenerative disorder (MacDonald et al., Cell 72:971–983, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abranches E, Silva M, Pradier L, Schulz H, Hummel O, Henrique D, Bekman E (2009) Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS One 4:e6286

    Article  PubMed  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    Article  PubMed  CAS  Google Scholar 

  • Arthur W (2004) The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol Dev 6:282–288

    Article  PubMed  Google Scholar 

  • Candiani S, Pestarino M, Cattaneo E, Tartari M (2007) Characterization, developmental expression and evolutionary features of the huntingtin gene in the amphioxus Branchiostoma floridae. BMC Dev Biol 7:127

    Article  PubMed  Google Scholar 

  • Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Wu N, Andre VM, Cummings DM, Levine MS (2007) The corticostriatal pathway in Huntington’s disease. Prog Neurobiol 81:253–271

    Article  PubMed  CAS  Google Scholar 

  • Chalasani K, Brewster RM (2011) N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube. Mol Biol Cell 22:1505–1515

    Article  PubMed  CAS  Google Scholar 

  • Clabough EB, Zeitlin SO (2006) Deletion of the triplet repeat encoding polyglutamine within the mouse Huntington’s disease gene results in subtle behavioral/motor phenotypes in vivo and elevated levels of ATP with cellular senescence in vitro. Hum Mol Genet 15:607–623

    Article  PubMed  CAS  Google Scholar 

  • Detrick RJ, Dickey D, Kintner CR (1990) The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron 4:493–506

    Article  PubMed  CAS  Google Scholar 

  • Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165

    Article  PubMed  CAS  Google Scholar 

  • Fan MM, Raymond LA (2007) N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81:272–293

    Article  PubMed  CAS  Google Scholar 

  • Fondon JW 3rd, Hammock EA, Hannan AJ, King DG (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31:328–334

    Article  PubMed  CAS  Google Scholar 

  • Fujimori T, Miyatani S, Takeichi M (1990) Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos. Development 110:97–104

    PubMed  CAS  Google Scholar 

  • Gissi C, Pesole G, Cattaneo E, Tartari M (2006) Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus. BMC Genomics 7:288

    Article  PubMed  Google Scholar 

  • Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D, Charrin BC, Dietrich P, Volvert ML, Guillemot F, Dragatsis I, Bellaiche Y, Saudou F, Nguyen L, Humbert S (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67:392–406

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LS (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40

    Article  PubMed  CAS  Google Scholar 

  • Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320:447–449

    Article  PubMed  CAS  Google Scholar 

  • Henshall TL, Tucker B, Lumsden AL, Nornes S, Lardelli MT, Richards RI (2009) Selective neuronal requirement for huntingtin in the developing zebrafish. Hum Mol Genet 18:4830–4842

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ, Laudet V, Schubert M (2004) The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci 61:2290–2308

    Article  PubMed  CAS  Google Scholar 

  • Hong E, Brewster R (2006) N-cadherin is required for the polarized cell behaviors that drive neurulation in the zebrafish. Development 133:3895–3905

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2005) Loss of ancestral genes in the genomic evolution of Ciona intestinalis. Evol Dev 7:196–200

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  PubMed  CAS  Google Scholar 

  • Kauffman JS, Zinovyeva A, Yagi K, Makabe KW, Raff RA (2003) Neural expression of the Huntington’s disease gene as a chordate evolutionary novelty. J Exp Zoolog B Mol Dev Evol 297:57–64

    Google Scholar 

  • Koren Z, Trifonov EN (2011) Role of everlasting triplet expansions in protein evolution. J Mol Evol 72:232–239

    Article  PubMed  CAS  Google Scholar 

  • Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M, Bally-Cuif L (2002) Parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129:3281–3294

    PubMed  CAS  Google Scholar 

  • Li Z, Karlovich CA, Fish MP, Scott MP, Myers RM (1999) A putative Drosophila homolog of the Huntington’s disease gene. Hum Mol Genet 8:1807–1815

    Article  PubMed  CAS  Google Scholar 

  • Lo Sardo V, Zuccato C, Gaudenzi G, Vitali B, Ramos C, Tartari M, Myre MA, Walker JA, Pistocchi A, Conti L, Valenza M, Drung B, Schmidt B, Gusella J, Zeitlin S, Cotelli F, Cattaneo E (2012) An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 15:713–721

    Article  PubMed  CAS  Google Scholar 

  • MacDonald ME (2003) Huntingtin: alive and well and working in middle management. Sci STKE 2003:pe48

    Article  PubMed  Google Scholar 

  • MacDonald ME, Ambrose CM, Duyao MP, Richard H, Myer RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B, Anderson MA, Wexler NS, Bates JFGG, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf AM, Lehrach H, Buckler AJ, Church D, Doucette-Stamm L, O’Donovan MC, Riba-Ramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Altherr DEHM, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Malinverno M, Carta M, Epis R, Marcello E, Verpelli C, Cattabeni F, Sala C, Mulle C, Di Luca M, Gardoni F (2010) Synaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage. J Neurosci 30:16343–16355

    Article  PubMed  CAS  Google Scholar 

  • Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 27:1682–1691

    Article  PubMed  CAS  Google Scholar 

  • Muhlau M, Winkelmann J, Rujescu D, Giegling I, Koutsouleris N, Gaser C, Arsic M, Weindl A, Reiser M, Meisenzahl EM (2012) Variation within the Huntington’s disease gene influences normal brain structure. PLoS One 7:e29809

    Article  PubMed  Google Scholar 

  • Myre MA, Lumsden AL, Thompson MN, Wasco W, MacDonald ME, Gusella JF (2011) Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 7:e1002052

    Article  PubMed  CAS  Google Scholar 

  • Palidwor GA, Shcherbinin S, Huska MR, Rasko T, Stelzl U, Arumughan A, Foulle R, Porras P, Sanchez-Pulido L, Wanker EE, Andrade-Navarro MA (2009) Detection of alpha-rod protein repeats using a neural network and application to huntingtin. PLoS Comput Biol 5:e1000304

    Article  PubMed  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358

    Article  PubMed  CAS  Google Scholar 

  • Pruessmeyer J, Ludwig A (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20:164–174

    Article  PubMed  CAS  Google Scholar 

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78

    Article  PubMed  CAS  Google Scholar 

  • Ramazzotti M, Monsellier E, Kamoun C, Degl’Innocenti D, Melki R (2012) Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes. PLoS One 7:e30824

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Del Mar N, Meade CA, Yang H, Dragatsis I, Zeitlin S, Goldowitz D (2001) Neurons lacking huntingtin differentially colonize brain and survive in chimeric mice. J Neurosci 21:7608–7619

    PubMed  CAS  Google Scholar 

  • Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 24:742–752

    Article  PubMed  CAS  Google Scholar 

  • Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, Clementi E, Hackam A, Hayden MR, Li Y, Cooper JK, Ross CA, Govoni S, Vincenz C, Cattaneo E (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20:3705–3713

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Amos W, Leggo J, Goodburn S, Ramesar RS, Old J, Bontrop R, McMahon R, Barton DE, Ferguson-Smith MA (1994) Mutational bias provides a model for the evolution of Huntington’s disease and predicts a general increase in disease prevalence. Nat Genet 7:525–530

    Article  PubMed  CAS  Google Scholar 

  • Ruden DM, Garfinkel MD, Xiao L, Lu X (2005) Expansions and contractions and the “biased embryos” hypothesis for rapid morphological evolution. Curr Genomics 6:145–155

    Article  CAS  Google Scholar 

  • Sathasivam K, Baxendale S, Mangiarini L, Bertaux F, Hetherington C, Kanazawa I, Lehrach H, Bates GP (1997) Aberrant processing of the Fugu HD (FrHD) mRNA in mouse cells and in transgenic mice. Hum Mol Genet 6:2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Schaefer MH, Wanker EE, Andrade-Navarro MA (2012) Evolution and function of CAG/polyglutamine repeats in protein-protein interaction networks. Nucleic Acids Res 40:4273–4287

    Article  PubMed  CAS  Google Scholar 

  • Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304:100–104

    Article  PubMed  CAS  Google Scholar 

  • Tartari M, Gissi C, Lo Sardo V, Zuccato C, Picardi E, Pesole G, Cattaneo E (2008) Phylogenetic comparison of huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin. Mol Biol Evol 25:330–338

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H, Iijima M (2011) Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. Mol Biol Cell 22:2270–2281

    Article  PubMed  CAS  Google Scholar 

  • Whan V, Hobbs M, McWilliam S, Lynn DJ, Lutzow YS, Khatkar M, Barendse W, Raadsma H, Tellam RL (2010) Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes. BMC Genomics 11:654

    Article  PubMed  Google Scholar 

  • White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, MacDonald ME (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17:404–410

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Baker KA, Hagg T (2006) The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 79:73–94

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Feany MB, Saraswati S, Littleton JT, Perrimon N (2009) Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington’s disease model. Dis Model Mech 2:247–266

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Joinnides M (2009) Hunting for the function of Huntingtin. Dis Model Mech 2:199–200

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cattaneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zuccato, C., Cattaneo, E. (2013). HTT Evolution and Brain Development. In: Gage, F., Christen, Y. (eds) Programmed Cells from Basic Neuroscience to Therapy. Research and Perspectives in Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36648-2_5

Download citation

Publish with us

Policies and ethics