Skip to main content

Complements on Elasticity Problems

  • Chapter
  • First Online:
Mixed Finite Element Methods and Applications

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 44))

  • 7460 Accesses

Abstract

Elasticity problems are probably the most common use of the finite element method. Historically, they were indeed at the origin of the method. We have already considered in Chap. 8, in particular in Sect. 8.12, standard formulations of elasticity problems based on displacement variables. Considerations on the choice of elements have also be presented in Sect. 8.14.1. Our main concern will now be to present mixed methods using explicitly an approximation of the stress tensor, in which the equilibrium condition is strongly imposed on each element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Amara and J.M. Thomas. Equilibrium finite elements for the linear elastic problem. Numer. Math., 33:367–383, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.N. Arnold, F. Brezzi, and J. Douglas. PEERS: a new mixed finite element for plane elasticity. Japan J. Appl.Math., 1:347–367, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.N. Arnold, J. Douglas, and C.P. Gupta. A family of higher order mixed finite element methods for plane elasticity. Numer. Math., 45:1–22, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.N. Arnold, R. Falk, and R. Winther. Mixed finite element methods for linear elasticity with weakly imposed symmetry. Mathematics of Computation, 76:1699–1723, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.N. Arnold, R.S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numerica, 15:1–155, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.N. Arnold, R.S. Falk, and R. Winther. Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc., 47:281–354, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods. Springer-Verlag, Berlin, 2009.

    Google Scholar 

  8. D Boffi, F Brezzi, and M. Fortin. Reduced symmetry elements in linear elasticity. Commun. Pur. Appl. Anal., 8:95–121, 2009.

    Google Scholar 

  9. F. Brezzi, J. Douglas, and L.D. Marini. Recent results on mixed finite element methods for second order elliptic problems. In Balakrishanan, Dorodnitsyn, and Lions, editors, Vistas in Applied Math., Numerical Analysis, Atmospheric Sciences, Immunology. Optimization Software Publications, New York, 1986.

    Google Scholar 

  10. F. Brezzi, M. Fortin, and L.D. Marini. Error analysis of piecewise constant approximations of Darcy’s law. Comput. Methods Appl. Mech. Engrg, 195:1547–1599, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Cockburn, J. Gopalakrishnan, and J. Guzmán. A new elasticity element made for enforcing weak stress symmetry. Math. Comp, 79:1331–1349, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. El Maliki, M. Fortin, N. Tardieu, and A. Fortin. Iterative solvers for 3D linear and nonlinear elasticity problems: Displacement and mixed formulations. Int. J. Numerical Methods in Engineering, 83, 2010.

    Google Scholar 

  13. H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, 2005.

    Google Scholar 

  14. R.S. Falk. Finite elements for the Reissner-Mindlin plate. In D. Boffi and L. Gastaldi, editors, Mixed Finite Elements,Compatibility Conditions and Applications. Springer-Verlag, Berlin, 2008.

    Google Scholar 

  15. M. Fortin and M. Farhloul. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numerische Mathematik, 76:419–440, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. In O.C. Zienkiewicz and G. Holister, editors, Stress Analysis. John Wiley and Sons, New York, 1965.

    Google Scholar 

  17. B. Fraeijs de Veubeke. Stress function approach. In World Congress on the Finite Element Method in Structural Mechanics, Dorset, England, 1975. Bournemouth.

    Google Scholar 

  18. L.P. Franca and R. Stenberg. Error analysis of some Galerkin least-squares methods of the elasticity equations. Technical report, INRIA, 1989.

    Google Scholar 

  19. J. Gopalakrishnan and J. Guzmán. Symmetric non-conforming mixed finite elements for linear elasticity. SIAM Journal on Numerical Analysis, 49(4):1504–1520, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Gopalakrishnan and J. Guzmán. A second elasticity element using the matrix bubble. IMA J. Numer. Anal., 32:352–372, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Guzmán. A unified analysis of several mixed methods for elasticity with weak symmetry. J. Sci. Comp., 44:156–169, 2010.

    Article  MATH  Google Scholar 

  22. C. Johnson and B. Mercier. Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math., 30:103–116, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  23. M.E. Morley. A family of mixed finite elements for linear elasticity. Numer. Math., 55(6):633–666, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Pechstein and J. Schöberl. Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Mathematical Models and Methods in Applied Sciences, 21(8):1761–1782, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Pechstein and J. Schöberl. Anisotropic mixed finite elements for elasticity. Int. J. Numer. Meth. Engng, 90:196–217, 2012.

    Article  MATH  Google Scholar 

  26. R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math., 53:513–538, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Stenberg. Two low-order mixed methods for the elasticity problem. In J.R. Whiteman, editor, The mathematics of finite elements and applications, pages 271–280. Academic Press, London, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boffi, D., Brezzi, F., Fortin, M. (2013). Complements on Elasticity Problems. In: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36519-5_9

Download citation

Publish with us

Policies and ethics