Skip to main content

Incompressible Materials and Flow Problems

  • Chapter
  • First Online:
Mixed Finite Element Methods and Applications

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 44))

Abstract

Although the approximation of incompressible flows by finite element methods has grown quite independently of the main stream of mixed and hybrid methods, it was soon recognised that a precise analysis requires the framework of mixed methods. In many cases, one may directly apply the techniques and results of Chaps. 4 and 5. In particular, the elements used are often standard elements or simple variants of standard elements. The specificity of the Stokes problem has however led to the development of special techniques; we shall present some of them that seem particularly interesting. Throughout this study, the main point will be to make a clever choice of elements leading to the satisfaction of the inf-sup condition which is here the important one as coercivity considerations are almost always straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Achchab and J. F. Maître. Estimate of the constant in two strengthened C.B.S. inequalities for F.E.M. systems of 2D elasticity: Application to multilevel methods and a posteriori error estimators. Numerical Linear Algebra with Applications, 3:147–159, 1996.

    Google Scholar 

  2. D.N. Arnold. On nonconforming linear-constant elements for some variants of the Stokes equations. Istit. Lombardo Accad. Sci. Lett. Rend. A, 127(1):83–93 (1994), 1993.

    MATH  Google Scholar 

  3. D.N. Arnold, D. Boffi, and R.S. Falk. Approximation by quadrilateral finite elements. Math. Comp., 71(239):909–922 (electronic), 2002.

    Google Scholar 

  4. D.N. Arnold, F. Brezzi, and J. Douglas. PEERS: a new mixed finite element for plane elasticity. Japan J. Appl.Math., 1:347–367, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21:337–344, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Auricchio, L. Beirão da Veiga, C. Lovadina, and A. Reali. The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput. Methods Appl. Mech. Engrg., 199(5–8):314–323, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. E. Bank and R. K. Smith. A posteriori error estimates based on hierarchical bases. SIAM Journal on Numerical Analysis, 30:921–935, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.S. Baruzzi, W.G. Habashi, G. Guèvremont, and M.M. Hafez. A second order finite element method for the solution of the transonic Euler and Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 20:671–693, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle-point problem. Acta Numerica, 14:1–137, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Bercovier. Régularisation duale des problèmes variationnels mixtes. PhD thesis, Université de Rouen, 1976.

    Google Scholar 

  11. M. Bercovier. Perturbation of a mixed variational problem, applications to mixed finite element methods. R.A.I.R.O. Anal. Numer., 12:211–236, 1978.

    Google Scholar 

  12. M. Bercovier and O.A. Pironneau. Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math., 33:211–224, 1977.

    Article  MathSciNet  Google Scholar 

  13. C. Bernardi and G. Raugel. Méthodes d’éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone non convexe. Calcolo, 18:255–291, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Boffi. Stability of higher order triangular Hood–Taylor methods for stationary Stokes equations. Math. Mod. Meth. Appl. Sci., 2(4):223–235, 1994.

    Article  MathSciNet  Google Scholar 

  15. D. Boffi. Minimal stabilizations of the P k + 1-P k approximation of the stationary Stokes equations. Math. Models Methods Appl. Sci., 5(2):213–224, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Boffi. Three-dimensional finite element methods for the Stokes problem. Siam J. Numer. Anal., 34:664–670, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Boffi. The immersed boundary method for fluid-structure interactions: mathematical formulation and numerical approximation. Bollettino U. M. I., (9) V (2012) pp. 711–724.

    Google Scholar 

  18. D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp., 69(229):121–140, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Boffi, N. Cavallini, F. Gardini, and L. Gastaldi. Local mass conservation of Stokes finite elements. J. Sci. Comput., 52(2):383–400, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Boffi and L. Gastaldi. On the quadrilateral Q 2 − P 1 element for the Stokes problem. International Journal for Numerical Methods in Fluids, 34:664–670, 2002.

    MathSciNet  Google Scholar 

  21. D. Boffi and C. Lovadina. Analysis of new augmented Lagrangian formulations for mixed finite element schemes. Numer. Math., 75(4):405–419, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. M. Boland and R. A. Nicolaides. Stability of finite elements under divergence constraints. SIAM J. Numer. Anal., 20(4):722–731, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. M. Boland and R. A. Nicolaides. On the stability of bilinear-constant velocity-pressure finite elements. Numer. Math., 44(2):219–222, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. M. Boland and R. A. Nicolaides. Stable and semistable low order finite elements for viscous flows. SIAM J. Numer. Anal., 22(3):474–492, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.M. Boland and R. Nicolaides. On the stability of bilinear–constant velocity–pressure finite elements. Numer. Math., 44:219–222, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Brezzi and K.J. Bathe. A discourse on the stability conditions for mixed finite element formulations. CMAME, 82:27–57, 1990.

    MathSciNet  MATH  Google Scholar 

  27. F. Brezzi and R.S. Falk. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 28(3):581–590, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  29. F. Brezzi and M. Fortin. A minimal stabilisation procedure for mixed finite element methods. Numer. Math., 89:457–492, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Brezzi and L.D. Marini. On the numerical solution of plate bending problems by hybrid methods. R.A.I.R.O. Anal. Numer., pages 5–50, 1975.

    Google Scholar 

  31. F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of the Stokes equations. In W. Hackbush, editor, Efficient Solutions of Elliptic Systems, volume 10 of Notes on Numerical Fluid Mechanics. Braunschweig, Wiesbaden, Vieweg, 1984.

    Google Scholar 

  32. D. Chapelle and K.-J. Bathe. The inf-sup test. Comput. & Structures, 47(4–5):537–545, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  33. P.G. Ciarlet. Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity.

    Google Scholar 

  34. P.G. Ciarlet. Mathematical elasticity. Vol. II. North-Holland Publishing Co., Amsterdam, 1997. Theory of plates.

    Google Scholar 

  35. J.F. Ciavaldini and J.C. Nédélec. Sur l’élément de Fraeijs de Veubeke et Sander. R.A.I.R.O. Anal.Numer., 8:29–45, 1974.

    Google Scholar 

  36. P. Clément. Approximation by finite element functions using local regularization. R.A.I.R.O. Anal. Mumer., 9:77–84, 1975.

    Google Scholar 

  37. B. Cockburn, G. Kanschat, and D. Schötzau. A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comp., 74(251):1067–1095 (electronic), 2005.

    Google Scholar 

  38. B. Cockburn, G. Kanschat, and D. Schötzau. A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput., 31(1–2):61–73, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Crouzeix and P.A. Raviart. Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer., 7:33–76, 1973.

    Google Scholar 

  40. J. Douglas and J. Wang. An absolutely stabilized finite element method for the Stokes problem. Math. Comput., 52:495–508, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Duvaut and J.L. Lions. Les inéquations en mécanique et en physique. Dunod, Paris, 1972.

    MATH  Google Scholar 

  42. A. El Maliki, M. Fortin, N. Tardieu, and A. Fortin. Iterative solvers for 3D linear and nonlinear elasticity problems: Displacement and mixed formulations. Int. J. Numerical Methods in Engineering, 83, 2010.

    Google Scholar 

  43. H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, 2005.

    Google Scholar 

  44. M. Farhloul and M. Fortin. A new mixed finite element for the Stokes and elasticity problems. SIAM Journal on Numerical Analysis, 30(4), 1993.

    Google Scholar 

  45. M. Farhloul and M. Fortin. Review and complements on mixed-hybrid finite element methods for fluid flows. Journal of Computational and Applied Mathematics, 149(1–2), 2002.

    Google Scholar 

  46. A. Fortin. Méthodes d’éléments finis pour les équations de Navier–Stokes. PhD thesis, Université Laval, 1984.

    Google Scholar 

  47. A. Fortin and M. Fortin. Newer and newer elements for incompressible flow. In R.H. Gallagher, G.F. Carey, J.T. Oden, and O.C. Zienkiewicz, editors, Finite Elements in Fluids, volume 6. John Wiley, Chichester, 1985.

    Google Scholar 

  48. M. Fortin. Utilisation de la méthode des éléments finis en mécanique des fluides. Calcolo, 12:405–441, 1975.

    Article  MathSciNet  Google Scholar 

  49. M. Fortin. An analysis of the convergence of mixed finite element methods. R.A.I.R.O. Anal. Numer., 11:341–354, 1977.

    Google Scholar 

  50. M. Fortin. Old and new finite elements for incompressible flows. Int. J. Num. Meth. in Fluids, 1:347–364, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Fortin. A three-dimensional quadratic non-conforming element. Mumer. Math., 46:269–279, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Fortin, R. Peyret, and R. Temam. Résolution numérique des équations de Navier-Stokes pour un fluide visqueux incompressible. Journal de mécanique, 10, 3:357–390, 1971.

    Google Scholar 

  53. M. Fortin and M. Soulie. A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Eng., 19:505–520, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  55. P. M. Gresho, R. L. Lee, S. T. Chan, and J. M. Leone. A new finite element for Boussinesq fluids. In Pro. Third Int. Conf. on Finite Elements in Flow Problems, pages 204–215. Wiley, New York, 1980.

    Google Scholar 

  56. D. F. Griffiths. The effect of pressure approximation on finite element calculations of compressible flows. In Numerical Methods for Fluid Dynamics, pages 359–374. Academic Press, Morton, K. W. and Baines, M. J. edition, 1982.

    Google Scholar 

  57. J. Guzmán and M. Neilan. Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp., to appear

    Google Scholar 

  58. J. Guzmán and M. Neilan. A family of non-conforming elements for the Brinkman problem. IMA J. Num. Anal., 32(4):1484–1508, 2012.

    Article  MATH  Google Scholar 

  59. P. Hood and C. Taylor. Numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids, 1:1–28, 1973.

    Article  MathSciNet  Google Scholar 

  60. P. Houston, D. Schötzau, and T.P. Wihler. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. Journal of Scientific Computing, 22–23(1):347–370, 2005.

    Google Scholar 

  61. Y. Huang and S. Zhang. A lowest order divergence-free finite element on rectangular grids. Front. Math. China, 6(2):253–270, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  62. T.J.R. Hughes and H. Allik. Finite elements for compressible and incompressible continua. In Proceedings of the Symposium on Civil Engineering, pages 27–62, Nashville Tenn., 1969. Vanderbilt University.

    Google Scholar 

  63. T.J.R. Hughes and L.P. Franca. A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces. Comp. Meth. Appl. Mech. Eng., 65:85–96, 1987.

    Google Scholar 

  64. T.J.R. Hughes, L.P. Franca, and M. Balestra. A new finite element formulation of computational fluid dynamics: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Comp. Meth. Appl. Mech.Eng., 59:85–99, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  65. C. Johnson and J. Pitkäranta. Analysis of some mixed finite element methods related to reduced integration. Math. Comp., 38:375–400, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  66. C. Johnson and J. Pitkäranta. Analysis of some mixed finite element methods related to reduced integration. Math. Comp., 38:375–400, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  67. R.B. Kellogg and J.E. Osborn. A regularity result for the Stokes problem. J. Funct. Anal., 21:397–431, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  68. P. Le Tallec and V. Ruas. On the convergence of the bilinear velocity-constant pressure finite method in viscous flow. Comp. Meth. Appl. Mech. Eng., 54:235–243, 1986.

    Article  MATH  Google Scholar 

  69. A. Linke. Collision in a cross-shaped domain—a steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD. Comput. Methods Appl. Mech. Engrg., 198(41–44):3278–3286, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  70. C. Lovadina. Analysis of strain-pressure finite element methods for the Stokes problem. Numer. Methods for PDEs, 13:717–730, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  71. D.S. Malkus. Eigenproblems associated with the discrete LBB-condition for incompressible finite elements. Int. J. Eng. Sci., 19:1299–1310, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  72. D.S Malkus and T.J.R. Hughes. Mixed finite element methods. reduced and selective integration techniques: a unification of concepts. Comp. Methods Appl. Mech. Eng., 15:63–81, 1978.

    Google Scholar 

  73. L. Mansfield. On finite element subspaces on quadrilateral and hexahedral meshes for incompressible viscous flow problems. Numer. Math., 45:165–172, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  74. J.T. Oden and O. Jacquotte. Stability of some mixed finite element methods for Stokesian flows. Comp. Meth. App. Mech. Eng., 43:231–247, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  75. R. Pierre. Local mass conservation and C 0-discretizations of the Stokes problem. Houston J. Math., 20(1):115–127, 1994.

    MathSciNet  MATH  Google Scholar 

  76. J. Pitkäranta and R. Stenberg. Analysis of some mixed finite element methods for plane elasticity equations. Math. Comp., 41:399–423, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Qin. On the convergence of some simple finite elements for incompressible flows. PhD thesis, Penn State University, 1994.

    Google Scholar 

  78. J. Qin and S. Zhang. Stability of the finite elements 9 ∕ (4c + 1) and 9 ∕ 5c for stationary Stokes equations. Comput. & Structures, 84(1–2):70–77, 2005.

    Article  MathSciNet  Google Scholar 

  79. R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations, 8(2):97–111, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  80. R. L. Sani, P. M. Gresho, R. L. Lee, D.F. Griffiths, and M. Engelman. The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. II. Internat. J. Numer. Methods Fluids, 1(2):171–204, 1981.

    Google Scholar 

  81. R.L. Sani, P.M. Gresho, R.L. Lee, and D.F. Griffiths. The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. I. Internat. J. Numer. Methods Fluids, 1(1):17–43, 1981.

    Google Scholar 

  82. L.R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Modelling Numer. Anal., 9:11–43, 1985.

    Google Scholar 

  83. R. Stenberg. Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. of Comp., 42:9–23, 1984.

    MathSciNet  MATH  Google Scholar 

  84. R. Stenberg. On the postprocessing of mixed equilibrium finite element methods. In W. Hackbusch and K. Witsch, editors, Numerical Tehchniques in Continuum Mechanics. Veiweg, Braunschweig, 1987. Proceedings of the Second GAMM-Seminar, Kiel 1986.

    Google Scholar 

  85. R. Stenberg. Error analysis of some finite element methods for the Stokes problem. Technical Report 948, INRIA, Domaine de Voluceau, B.P.105, 78153, Le Chesnay, France, 1988.

    Google Scholar 

  86. R. Temam. Navier-Stokes Equations. North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

  87. R. W. Thatcher. Locally mass-conserving Taylor-Hood elements for two- and three-dimensional flow. Internat. J. Numer. Methods Fluids, 11(3):341–353, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  88. D. M. Tidd, R. W. Thatcher, and A. Kaye. The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension. Internat. J. Numer. Methods Fluids, 8(9):1011–1027, 1988.

    Article  MathSciNet  Google Scholar 

  89. R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes equation. R.A.I.R.O. Anal. Numer., 18:175–182, 1984.

    Google Scholar 

  90. S. Zhang. A family of Q k + 1, k ×Q k, k + 1 divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal., 47(3):2090–2107, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  91. O.C. Zienkiewicz, S. Qu, R.L. Taylor, and S. Nakazawa. The patch text for mixed formulations. Int. J. Num. Meth. Eng., 23:1873–1883, 1986.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boffi, D., Brezzi, F., Fortin, M. (2013). Incompressible Materials and Flow Problems. In: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36519-5_8

Download citation

Publish with us

Policies and ethics