Skip to main content

Mixed Methods for Elliptic Problems

  • Chapter
  • First Online:
Mixed Finite Element Methods and Applications

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 44))

Abstract

This chapter will present a first set of applications of the theory developed in the previous chapters. It will provide us with the occasion of introducing many ideas which often have a more general scope than the simple considered case. We shall indeed consider the most simple cases of non-standard methods for Dirichlet’s problem, including hybrid methods. We then concentrate on numerical issues for the solution of the discrete problems arising from the previous constructions. In the following section, we sketch miscellaneous results on error estimates in different norms. Section 7.6 is dedicated to an example of application to semiconductor devices simulation. Section 7.7 discusses the sensitivity of low order mixed formulations to mesh deformation. We shall then consider in Sect. 7.8 the relations between mixed methods and the Finite Volume Method. A related idea, using a nonconforming element, will then be discussed in Sect. 7.9 and shown not to be convergent. Finally, Sect. 7.10 presents some applications of augmented formulations introduced in Sect. 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Achchab, B. Agouzal, A. Baranger, and J.F. Maitre. Estimateurs d’erreur a posteriori hiérarchiques. Applications aux éléments finis mixtes. Numer. Math., 80(2):159–179, 1998.

    Google Scholar 

  2. M. Ainsworth. A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput, 30(1):189204, 2007.

    Google Scholar 

  3. T. Arbogast, M.F. Wheeler, and I. Yotov. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal., 34(2):828852, 1997.

    Google Scholar 

  4. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2001/02.

    Google Scholar 

  5. D.N. Arnold and F. Brezzi. Mixed and non-conforming finite element methods: implementation, post-processing and error estimates. Math. Modelling Numer. Anal., 19:7–35, 1985.

    MathSciNet  MATH  Google Scholar 

  6. I. Babuška and J.E. Osborn. Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients. Math. Comp., 32:991–1023, 1978.

    MathSciNet  MATH  Google Scholar 

  7. I. Babuska and W.C. Rheinboldt. Error estimates for adaptive finite element computation. SIAM Numer. Anal, 15:736–754, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.E. Bank and A. Weiser. Some a posteriori error estimator for elliptic partial differential equation. Math. Comp., 44:283–301, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Baranger, J.F. Maitre, and F. Oudin. Connection between finite volume and mixed finite element methods. M2AN, 30:445–465, 1996.

    Google Scholar 

  10. K.-J. Bathe, C. Nitikitpaiboon, and X. Wang. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Computers & Structures, 56:225–237, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Becker, P. Hansbo, and M.G. Larson. Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comp. Methods Appl. Mech. Engrg., 192:2003, 2001.

    MathSciNet  Google Scholar 

  12. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991), volume 299 of Pitman Res. Notes Math. Ser., pages 13–51. Longman Sci. Tech., Harlow, 1994.

    Google Scholar 

  13. D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp., 69(229):121–140, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Bois, M. Fortin, and A. Fortin. A fully optimal anisotropic mesh adaptation method based on a hierarchical error estimator. Computer Methods in Applied Mechanics and Engineering, 209–212:12–27, 2012.

    Article  MathSciNet  Google Scholar 

  15. R. Bois, M. Fortin, A. Fortin, and A. Couët. High order optimal anisotropic mesh adaptation using hierarchical elements. European Journal of Computational Mechanics/Revue Europenne de Mcanique Numrique, 21(1–2):72–91, 2012.

    Google Scholar 

  16. J.H. Bramble and A.H. Schatz. Estimates for spline projections. R.A.I.R.O. Anal. Numer., 10:5–37, 1976.

    Google Scholar 

  17. J.H. Bramble and A.H. Schatz. Higher order local accuracy by averaging in the finite element method. Math. Comp., 31:94–111, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Brezzi. Sur une méthode hybride pour l’approximation du problème de la torsion d’une barre élastique. Ist. Lombardo (Rend. Sc., A108:274–300, 1974.

    Google Scholar 

  19. F. Brezzi, J. Douglas, R. Duran, and M. Fortin. Mixed finite elements for second order elliptic problems in three variables. Numer. Math., 51:237–250, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Brezzi, J. Douglas, M. Fortin, and L.D. Marini. Efficient rectangular mixed finite elements in two and three space variables. Math. Model. Numer. Anal., 21:581–604, 1987.

    MathSciNet  MATH  Google Scholar 

  21. F. Brezzi, J. Douglas, and L.D. Marini. Recent results on mixed finite element methods for second order elliptic problems. In Balakrishanan, Dorodnitsyn, and Lions, editors, Vistas in Applied Math., Numerical Analysis, Atmospheric Sciences, Immunology. Optimization Software Publications, New York, 1986.

    Google Scholar 

  22. F. Brezzi, M. Fortin, and L.D. Marini. Error analysis of piecewise constant approximations of Darcy’s law. Comput. Methods Appl. Mech. Engrg, 195:1547–1599, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Brezzi, L.D. Marini, and P. Pietra. Méthodes d’éléments finis mixtes et schéma de Scharfetter-Gummel. C.R.A.S. Paris, 305, I:599–604, 1987.

    Google Scholar 

  24. F. Brezzi, L.D. Marini, and P. Pietra. Numerical simulation of semi conductor devices. Comp. Math. Appl. Mech. Eng., 75:493–514, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Brezzi, L.D. Marini, and P. Pietra. Two dimensional exponential fitting and application to drift-diffusion models. SIAM. J. Num. Anal., 26:1347–1355, 1989.

    Article  MathSciNet  Google Scholar 

  26. S. Caorsi, P. Fernandes, and M. Raffetto. On the spurious modes in deterministic problems. COMPEL, 13, Supplement A:317–332, 1994.

    Google Scholar 

  27. C. Carstensen and G. Dolzmann. A posteriori error estimates for mixed FEM in elasticity. Numer. Math., 81:187209, 1998.

    Article  MathSciNet  Google Scholar 

  28. J. Céa. Approximation variationnelle et convergence des éléments finis; un test. Journées Eléments Finis, Université de Rennes, 1976.

    Google Scholar 

  29. P.G. Ciarlet. Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity.

    Google Scholar 

  30. P.G. Ciarlet. Mathematical elasticity. Vol. II. North-Holland Publishing Co., Amsterdam, 1997. Theory of plates.

    Google Scholar 

  31. M. Crouzeix and P.A. Raviart. Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer., 7:33–76, 1973.

    Google Scholar 

  32. J. Douglas, R. Duran, and P. Pietra. Alternating-direction iteration for mixed finite element methods. In R. Glowinski and J.L. Lions, editors, Computing Methods in Applied Sciences and Engineering 7. North-Holland, Amsterdam, 1986.

    Google Scholar 

  33. J. Douglas, R. Duran, and P. Pietra. Formulation of alternating-direction iterative methods for mixed methods in three space. In E.L. Ortiz, editor, Numerical Approximation of Partial Differential Equations. North-Holland, Amsterdam, 1987.

    Google Scholar 

  34. J. Douglas and F. Milner. Interior and superconvergence estimates for mixed methods for second order elliptic problems. Math. Modelling Numer. Anal., 19:397–428, 1985.

    MathSciNet  MATH  Google Scholar 

  35. J. Douglas and P. Pietra. A description of some alternating-direction iterative techniques for mixed finite element methods. In W.E. Fitzgibbon, editor, Mathematical andComputational Methods in Seismic Exploration and Reservoir Modeling. SIAM, Philadelphia, 1986.

    Google Scholar 

  36. J. Douglas and J.E. Roberts. Mixed finite element methods for second order elliptic problems. Math. Applic. Comp., 1:91–103, 1982.

    MathSciNet  MATH  Google Scholar 

  37. J. Douglas and J.E. Roberts. Global estimates for mixed methods for second order elliptic equations. Math. Comp., 44:39–52, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Eymard, Galloü, and R. Herbin. Finite Volumes Methods. Handbook of Numerical Analysis. Elsevier, 2000.

    Google Scholar 

  39. M. Fortin and M. Soulie. A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Eng., 19:505–520, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. In O.C. Zienkiewicz and G. Holister, editors, Stress Analysis. John Wiley and Sons, New York, 1965.

    Google Scholar 

  41. B. Fraeijs de Veubeke. Variational principles and the patch test. Int. J. Numer. Meth. Eng., 8:783–801, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Gastaldi and R.H. Nochetto. Optimal L -error estimates for nonconforming and mixed finite element methods of lowest order. Numer. Math., 50(5):587–611, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Gastaldi and R.H. Nochetto. Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Modél. Math. Anal. Numér., 23(1):103–128, 1989.

    MathSciNet  MATH  Google Scholar 

  44. G. N. Gatica and M Maischak. A posteriori error estimates for the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Eq., 21:421450, 2005.

    Google Scholar 

  45. P.L. George and H. Bourouchaki. Delauney Triangulation and Meshing: Application to Finite Elements. Hermes Science Publications, 1998.

    Google Scholar 

  46. P. Grisvard. Elliptic Problems in Non-Smooth Domains. Pitman, London, 1985.

    Google Scholar 

  47. C. Gruau and T. Coupez. 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comp. Meth in Appl. Mech and Engrg, 194:4951–4976, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  48. W.G. Habashi, J. Dompierre, Y. Bourgault, D. Ait Ali Yahia, M. Fortin, and M.G. Vallet. Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. part i: general principles. International Journal for Numerical Methods in Fluids, 32:725–744, 2000.

    Google Scholar 

  49. Y. Haugazeau and P. Lacoste. Condensation de la matrice masse pour les éléments finis mixtes de H(rot). C. R. Acad. Sci. Paris, 316, série I:509–512, 1993.

    Google Scholar 

  50. W. Huang. Metric tensors for anisotropic mesh generation. J. Comput. Phys., 204:633–665, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  51. C. Johnson and V. Thomée. Error estimates for some mixed finite element methods for parabolic type problems. R.A.I.R.O. Anal. Numer., 15:41–78, 1981.

    Google Scholar 

  52. J. E. Jones, Z. Cai, S. F. Mccormick, and T. F. Russell. Control-volume mixed finite element methods. Comput. Geosci., 1:289–315, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  53. M.G. Larson and A. Målqvist. A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math, 108:487500, 2008.

    Article  Google Scholar 

  54. M. Lonsing and Verfürth. A posteriori error estimators for mixed finite element methods in linear elasticity. Numer. Math, 97:757778, 2004.

    Google Scholar 

  55. C. Lovadina and R. Stenberg. Energy norm a posteriori error estimates for mixed finite element methods. Math.Comp., 75:1659–1674, 2006.

    Google Scholar 

  56. L.D. Marini. An inexpensive method for the evaluation of the solution of the lower order Raviart-Thomas mixed method. SIAM J. Numer. Anal., 22:493–496, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  57. L.D. Marini and P. Pietra. An abstract theory for mixed approximations of second order elliptic problems. Mat. Apl. Comput., 8(3):219–239, 1989.

    MathSciNet  MATH  Google Scholar 

  58. L.D. Marini and P. Pietra. New mixed finite element schemes for current continuity equations. COMPEL, 9(4):257–268, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  59. L.D. Marini and A. Savini. Accurate computation of electric field in reverse biased semi-conductor devices: a mixed finite element approach. Compel, 3:123–135, 1984.

    Article  MATH  Google Scholar 

  60. B. Mohammadi, P-L. George, F. Hecht, and E. Saltel. 3D mesh adaptation by metric control for CFD. Revue européenne des éléments finis, 9:439–449, 2000.

    Google Scholar 

  61. A. Naga and Z. Zhang. A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal, 42:1780–1800, 2005.

    Article  MathSciNet  Google Scholar 

  62. T.H.H. Pian. Formulations of finite element methods for solid continua. In R.H. Gallagher, Y. Yamada, and J.T. Oden, editors, Recent Advances in Matrix Methods Structural Analysis and Design. The University of Alabama Press, Alabama, 1971.

    Google Scholar 

  63. P.A. Raviart and J.M. Thomas. A mixed finite element method for second order elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of the Finite Element Method, volume 606 of Lectures Notes in Math. Springer-Verlag, New York, 1977.

    Google Scholar 

  64. P.A. Raviart and J.M. Thomas. Primal hybrid finite element methods for second order elliptic equations. Math. of Comp., 31:391–413, 1977.

    MathSciNet  MATH  Google Scholar 

  65. P.A. Raviart and J.M Thomas. Dual finite element models for second order elliptic problems. In R. Glowinski, E.Y. Rodin, and O.C. Zienkiewicz, editors, Energy methods in Finite Element Analysis. John Wiley and Sons, Chichester, 1979.

    Google Scholar 

  66. R. Scholz. L -convergence of saddle point approximations for second order problems. R.A.I.R.O. Anal. Numer., 11:209–216, 1977.

    Google Scholar 

  67. R. Scholz. A remark on the rate of convergence for a mixed finite element method for second order problems. Numer. Funct. Anal. Optim., 4:269–277, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Scholz. Optimal L -estimates for a mixed finite element method for elliptic and parabolic problems. Calcolo, 20:355–377, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Stenberg. On the postprocessing of mixed equilibrium finite element methods. In W. Hackbusch and K. Witsch, editors, Numerical Tehchniques in Continuum Mechanics. Veiweg, Braunschweig, 1987. Proceedings of the Second GAMM-Seminar, Kiel 1986.

    Google Scholar 

  70. G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice Hall, New York, 1973. now published by Wellesley-Cambridge Press.

    Google Scholar 

  71. F. Stummel. The generalized patch test. SIAM, J. Numer. Anal., 16:449–471, 1979.

    Google Scholar 

  72. S. Sun and M. F. Wheeler. Symmetric and non symmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal., 43(1):195–219, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  73. J.M Thomas. Méthode des élḿents finis hybrides duaux pour les problèmes du second ordre. R.A.I.R.O. Anal. Numer., 10:51–79, 1976.

    Google Scholar 

  74. J.M Thomas. Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes. Master’s thesis, Université Pierre et Marie Curie, Paris, 1977.

    Google Scholar 

  75. R. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

  76. R. Verfürth. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advances in numerical mathematics. Wiley-Teubner, 1996.

    MATH  Google Scholar 

  77. X. Wang and K.-J. Bathe. On mixed elements for acoustic fluid-structure interaction. Math. Models Methods Appl. Sci., 7(3):329–343, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  78. B.I. Wohlmuth and R. H. W. Ronald H. W. Hoppe. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. MATH. COMP, 68:1347–1378, 1999.

    Google Scholar 

  79. A. Younès, P. Ackerer, and G. Chavent. From mixed finite elements to finite volumes for elliptic pdes in two and three dimensions. Internat. J. Numer. Methods Engrg, 59:365388, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boffi, D., Brezzi, F., Fortin, M. (2013). Mixed Methods for Elliptic Problems. In: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36519-5_7

Download citation

Publish with us

Policies and ethics